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Overview

2

 2D Transformations

 Basic 2D transformations

 Matrix representation

 Matrix composition

 3D Transformations

 Basic 3D transformations

 Same as 2D
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- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

- We will go into depth as far, as there are no questions

How the lectures should look like #1



Geometry space
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 Scene

 Virtual representation of world

 Objects

 Visible objects

(“real world”)

 Invisible objects 

(e.g. lights, 

cameras, etc.)



Full scene definition

5

 Objects

 What objects, where, how transformed

 To be discussed early during course

 How they look – color, material, texture...

 To be discussed later during course

 Camera

 Position, target, camera parameters



Coordinate system

6

 Cartesian coordinates in 2D

 Origin

 x axis

 y axis
(5,3)



Coordinate systems
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 Global

 One for whole scene

 Local

 Individual for every model

 Pivot point

 Camera coordinates

 Window coordinates

 Units may differ

 Conversion between coordinate spaces



Global/local/camera coords.
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Essential basic algebra 



Point
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 Position in space

 Cartesian coordinates

 Homogeneous coordinates

 Notation: P, A, …

),( yx

),,( zyx

)1,,,( zyx

)1,,( yx



Vector
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 Direction in space, 

 Has no position

 Subtraction of points

 Cartesian coordinates

 Homogeneous coordinates

 Notation: 

),( yx

),,( zyx

)0,,,( zyx

)0,,( yx

nvu


,,



Vector
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 Addition

Point + vector = point

Vector + vector = vector

 Subtraction

Point – point = vector

Point – vector = point + (-vector) = point

Vector – vector = vector + (-vector) = vector

 Multiplication

Multiplier * vector = vector
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- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

Ask questions
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Transformations



2D Modeling Transformations
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 Modeling space and World space



2D Modeling Transformations
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 Transformed instances



2D Modeling Transformations
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 Transformation identity



2D Modeling Transformations
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 Scaling applied…



2D Modeling Transformations
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 Scaling and rotation applied…



2D Modeling Transformations
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 Scaling, rotation and translation applied…



2D Modeling Transformations
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 Translation:

 x’ = x + 𝑡𝑥

 y’ = y + 𝑡𝑦

 Scale:

 x’ = x * 𝑠𝑥

 y’ = y * 𝑠𝑦

 Rotation:

 x’ = x*cosΘ - y*sinΘ

 y’ = x*sinΘ + y*cosΘ



2D Modeling Transformations
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 Translation:

 x’ = x + 𝑡𝑥

 y’ = y + 𝑡𝑦

 Scale:

 x’ = x * 𝑠𝑥

 y’ = y * 𝑠𝑦

 Rotation:

 x’ = x*cosΘ - y*sinΘ

 y’ = x*sinΘ + y*cosΘ



2D Modeling Transformations
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 Translation:

 x’ = x + 𝑡𝑥

 y’ = y + 𝑡𝑦

 Scale:

 x’ = x * 𝑠𝑥

 y’ = y * 𝑠𝑦

 Rotation:

 x’ = x*cosΘ - y*sinΘ

 y’ = x*sinΘ + y*cosΘ



2D Modeling Transformations
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 Translation:

 x’ = x + 𝑡𝑥

 y’ = y + 𝑡𝑦

 Scale:

 x’ = x * 𝑠𝑥

 y’ = y * 𝑠𝑦

 Rotation:

 x’ = x*cosΘ - y*sinΘ

 y’ = x*sinΘ + y*cosΘ



2D Modeling Transformations
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 Translation:

 x’ = x + 𝑡𝑥

 y’ = y + 𝑡𝑦

 Scale:

 x’ = x * 𝑠𝑥

 y’ = y * 𝑠𝑦

 Rotation:

 x’ = x*cosΘ - y*sinΘ

 y’ = x*sinΘ + y*cosΘ



2D Modeling Transformations
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 Translation:

 x’ = x + 𝑡𝑥

 y’ = y + 𝑡𝑦

 Scale:

 x’ = x * 𝑠𝑥

 y’ = y * 𝑠𝑦

 Rotation:

 x’ = x*cosΘ - y*sinΘ

 y’ = x*sinΘ + y*cosΘ



Overview
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 2D Transformations

 Basic 2D transformations

 Matrix representation

 Matrix composition

 3D Transformations

 Basic 3D transformations

 Same as 2D



Matrix Representation
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 Represent 2D transformation by a matrix

𝑎 𝑏
𝑐 𝑑

 Multiply matrix by column vector ⇔ transformation of a point

𝑥′
𝑦′

 = 
𝑎 𝑏
𝑐 𝑑

𝑥
𝑦              𝑥′ = 𝑎𝑥 + 𝑏𝑦

                                                𝑦′ = 𝑐𝑥 + 𝑑𝑦

                                          



Matrix Representation
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 Transformations combined by multiplication

𝑥′
𝑦′

 = 
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

𝑖 𝑗
𝑘 𝑙

𝑥
𝑦

Matrices are a convenient and efficient way to represent a 

sequence of transformations!



2x2 Matrices
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 What transformations can be represented by a 2x2 

matrix?

 2D Identity?

 𝑥′ = 𝑥    𝑦 = 𝑦  
𝑥′
𝑦′

 = 
1 0
0 1

𝑥
𝑦

 2D Scale around origin (0,0)?

 𝑥′ = 𝑠𝑥  ∗  𝑥    𝑦 = 𝑠𝑦 ∗  𝑦 
𝑥′
𝑦′

 = 
𝑠𝑥 0
0 𝑠𝑦

𝑥
𝑦



2x2 Matrices
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 What transformations can be represented by a 2x2 matrix?

 2D Rotate around origin (0,0)?

 𝑥′ = x ∗  cos 𝜃 − y ∗  sin 𝜃    

 𝑦′ = x ∗ 𝑠𝑖𝑛 𝜃 + y ∗ 𝑐𝑜𝑠 𝜃
𝑥′
𝑦′

 =
cos 𝜃 − sin 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

𝑥
𝑦

 2D Shear?

 𝑥′ = 𝑥 + 𝑠ℎ𝑥 ∗ 𝑦 

 𝑦′ = 𝑠ℎ𝑦 ∗ 𝑥 + 𝑦 
𝑥′
𝑦′

 = 
1 𝑠ℎ𝑥

𝑠ℎ𝑦 1
𝑥
𝑦



2x2 Matrices
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 What transformations can be represented by a 2x2 
matrix?

 2D Mirror over Y axis?

 𝑥′ = −𝑥

 𝑦′ = 𝑦
𝑥′
𝑦′

 =
−1 0
0 1

𝑥
𝑦

 2D Mirror over (0,0)?

 𝑥′ = −𝑥 

 𝑦′ = −𝑦 
𝑥′
𝑦′

 = 
−1 0
0 −1

𝑥
𝑦



2x2 Matrices

33

 What transformations can be represented by a 2x2 

matrix?

 2D Translation?

 𝑥′ = 𝑥 + 𝑡𝑥

 𝑦′ = 𝑦 + 𝑡𝑦  
𝑥′
𝑦′

 =
? ?
? ?

𝑥
𝑦

Only a linear 2D transformations can be 

represented by a 2x2 matrix



Linear Transformations

34

 Linear transformations are combinations of ..

 Scale

 Rotation

 Shear

 Mirror

 Properties of linear transformations:

 Satisfies: 𝑇 𝑠1𝑝1 + 𝑠2𝑝2 = 𝑠1𝑇 𝑝1 + 𝑠2𝑇(𝑝1)

 Origin maps to origin

 Lines map to lines

 Parallel lines remain parallel

 Ratios are preserved

 Closed under composition



2D Translation
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 2D translation represented by a 3x3 matrix

 Point represented in homogenous coordinates

 𝑥′ = 𝑥 + 𝑡𝑥

 𝑦′ = 𝑦 + 𝑡𝑦  
𝑥′

𝑦′

1

 =

1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

𝑥
𝑦
1



Homogenous Coordinates
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 Add a 3rd coordinate to every 2D point

 (x,y,w) represents a point at location (x/w, y/w)

 (x,y,0) represents a point at infinity

 (0,0,0) is not allowed



Basic 2D Transformations
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 Basic 2D transformations as 3x3 matrices

𝑥′

𝑦′

1

 =

1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

𝑥
𝑦
1

𝑥′

𝑦′

1

 =

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑥
𝑦
1

                  Translate                                        Scale

𝑥′

𝑦′

1

 =
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

𝑥
𝑦
1

      
𝑥′

𝑦′

1

 =

1 𝑠ℎ𝑥 0
𝑠ℎ𝑦 1 0

0 0 1

𝑥
𝑦
1

                    Rotate                                          Shear
 



Affine Transformations
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 Affine transformations are combinations of... 
 Linear transformations, and

 Translations

𝑥′

𝑦′

𝑤′

 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
0 0 1

𝑥
𝑦
𝑤

 Properties of affine transformations:
 Origin does not necessarily map to origin 

 Lines map to lines

 Parallel lines remain parallel

 Ratios are preserved

 Closed under composition



Projective Transformations
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 Projective transformations:

𝑥′

𝑦′

𝑤′

 =

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑥
𝑦
𝑤

 Properties of projective transformations:

 Origin does not necessarily map to origin 

 Lines map to lines

 Parallel lines do not necessarily remain parallel

 Ratios are not preserved

 Closed under composition



Overview
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 2D Transformations

 Basic 2D transformations

 Matrix representation

 Matrix composition

 3D Transformations

 Basic 3D transformations

 Same as 2D



Matrix Composition
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 Transformations can be combined by matrix 

multiplication

P’    =      T(𝑡𝑥, 𝑡𝑦)                 R(𝜃)                  S(𝑠𝑥, 𝑠𝑦)    P

𝑥′

𝑦′

𝑤′

 = 

1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑥
𝑦
𝑤



Matrix Composition
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 Matrices are a convenient and efficient way to represent a 

sequence of transformations

 General purpose representation

 Hardware matrix multiply

 Efficiency with premultiplication

 Matrix multiplication is associative

                              P’ = (T * (S * (R * p)))

                              P’ = (T * S * R) * p



Matrix Composition
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 Be aware: order of transformations matters

 Matrix multiplication is not commutative

                                                        transformation order

                              P’ = T * S * R * p

“Global” “Local”



Matrix Composition
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 Be aware: order of transformations matters

 Matrix multiplication is not commutative

            



Problem: local rotation
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angle φ



Matrix Composition
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 Rotate around an arbitrary point (a,b)

 Translate (a,b) to the origin

 Rotate around origin

 Translate back



Matrix Composition
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 Rotate around an arbitrary point (a,b)

 Translate (a,b) to the origin

 Rotate around origin

 Translate back

M = T(a, b) * R(𝜃) * T(-a, -b)



Matrix Composition
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1. translate rotation center to origin: t(tx,ty)

2. rotate by φ

3. inverse translate by t´(-tx,-ty)

Matrix notation:

















−−















−

















=

1

010

001

100

0cossin

0sincos

1

010

001

)1,,()1,','(

ytxtytxt

yxyx 





Matrix Composition
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 Scale by sx, sy around arbitrary point (a, b)

 Use the same approach …



Matrix Composition
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 Scale by sx, sy around arbitrary point (a, b)

 Use the same approach …

M = T(a, b) * S(𝑠𝑥, 𝑠𝑦) * T(-a, -b)



Overview
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 2D Transformations

 Basic 2D transformations

 Matrix representation

 Matrix composition

 3D Transformations

 Basic 3D transformations

 Same as 2D



3D Transformations
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 Right-handed coordinate system

 Left-handed coordinate system

 rotation direction



3D Transformations
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 Same idea as 2D transformations

 Homogenous coordinates (x,y,z,w)

 4x4 transformation matrices

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙

𝑚 𝑛 𝑜 𝑝

𝑥
𝑦
𝑧
𝑤



Basic 3D Transformations
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              Identity                                      Scale

             Translation                            Mirror over X

𝑥′

𝑦′

𝑧′

𝑤′

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝑥
𝑦
𝑧
𝑤

𝑥′

𝑦′

𝑧′

𝑤′

 = 

1 0 0 𝑡𝑥

0 1 0 𝑡𝑦

0 0 1 𝑡𝑧

0 0 0 1

𝑥
𝑦
𝑧
𝑤

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0 0 𝑠𝑧 0
0 0 0 1

𝑥
𝑦
𝑧
𝑤

𝑥′

𝑦′

𝑧′

𝑤′

 = 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

𝑥
𝑦
𝑧
𝑤



Basic 3D Transformations
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 Rotation around Z axis

 Rotation around Y axis

 Rotation around X axis

𝑥′

𝑦′

𝑧′

𝑤′

 =

cos 𝜃 −sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

𝑥
𝑦
𝑧
𝑤

𝑥′

𝑦′

𝑧′

𝑤′

 =

cos 𝜃 0 sin 𝜃 0
0 1 0 0

−sin 𝜃 0 cos 𝜃 0
0 0 0 1

𝑥
𝑦
𝑧
𝑤

𝑥′

𝑦′

𝑧′

𝑤′

 =

1 0 0 0
0 cos 𝜃 −sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
0 0 0 1

𝑥
𝑦
𝑧
𝑤



Same as 2D
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 Everything else is the same as 2D

 In fact 2D is actually 3D in OpenGL

 z is either 0 or ignored
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- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #3
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Projections



Projection
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 General definition:

 Maps points in n-space to m-space (m<n)

 In Computer Graphics:

 Map 3D camera coordinates to 2D screen coordinates



Viewing transformation
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 Convert from local/world coordinates to 

camera/viewport coordinates

1. rotate scene so that camera lies in z-axis

2. projection transformation

3. viewport transformation



Stage 0
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Stage 1 - translate P→P’

62



Stage 2 - rotate P’→P’’→P’’’
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Stage 2 - rotate P’→P’’→P’’’

64



Orthogonal projection
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Orthogonal projection
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 𝑥𝑃 = x’’’

 𝑦𝑃 = y’’’

 z’’’ is simply left out

 Matrix notation



















=

1000

0000

0010

0001

)1,''',''','''()1,,,( zyxzyx pPP



Perspective projection
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Taxonomy of Projections

68



Taxonomy of Projections

69



Parallel Projection
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 Center of projection is at infinity

 Direction of projection (DOP) same for all points



Orthographic Projections
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 DOP perpendicular to view plane



Oblique Projections
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 DOP not perpendicular to view plane



Parallel Projection View Volume
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Parallel Projection Matrix
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 General parallel projection transformation



Taxonomy of Projections

75



Perspective Projection
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 Maps points onto a view plane along projectors emitting 

from center of projection (COP)



Perspective Projection
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 N-point perspective

 How many vanishing points?

3-point 

perspective 

2-point 

perspective 

1-point 

perspective 



Perspective Projection
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 Compute 2D coordinates from 3D coordinates using 

triangle similarity principle



Perspective Projection
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 Compute 2D coordinates from 3D coordinates using 

triangle similarity principle



Perspective Projection
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 4x4 matrix representation

 𝑥𝑆 =  𝑥𝐶𝐷/𝑧𝐶

 𝑦𝑆 =  𝑦𝐶𝐷/𝑧𝐶

 𝑧𝑆 =  𝐷

 𝑤𝑆 = 1

 𝑥𝑠
 𝑦𝑠
 𝑧𝑠
 𝑤𝑠

 =

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙

𝑚 𝑛 𝑜 𝑝

 𝑥𝑐
 𝑦𝑐
 𝑧𝑐

1



Perspective Projection
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 4x4 matrix representation

 𝑥𝑆 =  𝑥𝐶𝐷/𝑧𝐶                                          𝑥𝑆 =  𝑥𝐶

 𝑦𝑆 =  𝑦𝐶𝐷/𝑧𝐶                                          𝑦𝑆 =  𝑦𝐶

 𝑧𝑆 =  𝐷                         depth is stored    𝑧𝑆 =  𝑧𝐶

 𝑤𝑆 = 1                                                   𝑤𝑆 =  𝑧𝐶/𝐷

 𝑥𝑠
 𝑦𝑠
 𝑧𝑠
 𝑤𝑠

 =

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙

𝑚 𝑛 𝑜 𝑝

 𝑥𝑐
 𝑦𝑐
 𝑧𝑐

1



Perspective Projection
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 4x4 matrix representation

 𝑥𝑆 =  𝑥𝐶𝐷/𝑧𝐶                                          𝑥𝑆 =  𝑥𝐶

 𝑦𝑆 =  𝑦𝐶𝐷/𝑧𝐶                                          𝑦𝑆 =  𝑦𝐶

 𝑧𝑆 =  𝐷                                                   𝑧𝑆 =  𝑧𝐶

 𝑤𝑆 = 1                                                   𝑤𝑆 =  𝑧𝐶/𝐷

 𝑥𝑠
 𝑦𝑠
 𝑧𝑠
 𝑤𝑠

 =

1 0 0 0
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙

𝑚 𝑛 𝑜 𝑝

 𝑥𝑐
 𝑦𝑐
 𝑧𝑐

1



Perspective Projection
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 4x4 matrix representation

 𝑥𝑆 =  𝑥𝐶𝐷/𝑧𝐶                                          𝑥𝑆 =  𝑥𝐶

 𝑦𝑆 =  𝑦𝐶𝐷/𝑧𝐶                                          𝑦𝑆 =  𝑦𝐶

 𝑧𝑆 =  𝐷                                                   𝑧𝑆 =  𝑧𝐶

 𝑤𝑆 = 1                                                   𝑤𝑆 =  𝑧𝐶/𝐷

 𝑥𝑠
 𝑦𝑠
 𝑧𝑠
 𝑤𝑠

 =

1 0 0 0
0 1 0 0
𝑖 𝑗 𝑘 𝑙

𝑚 𝑛 𝑜 𝑝

 𝑥𝑐
 𝑦𝑐
 𝑧𝑐

1



Perspective Projection
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 4x4 matrix representation

 𝑥𝑆 =  𝑥𝐶𝐷/𝑧𝐶                                          𝑥𝑆 =  𝑥𝐶

 𝑦𝑆 =  𝑦𝐶𝐷/𝑧𝐶                                          𝑦𝑆 =  𝑦𝐶

 𝑧𝑆 =  𝐷                                                   𝑧𝑆 =  𝑧𝐶

 𝑤𝑆 = 1                                                   𝑤𝑆 =  𝑧𝐶/𝐷

 𝑥𝑠
 𝑦𝑠
 𝑧𝑠
 𝑤𝑠

 =

1 0 0 0
0 1 0 0
0 0 1 0
𝑚 𝑛 𝑜 𝑝

 𝑥𝑐
 𝑦𝑐
 𝑧𝑐

1



Perspective Projection
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 4x4 matrix representation

 𝑥𝑆 =  𝑥𝐶𝐷/𝑧𝐶                                          𝑥𝑆 =  𝑥𝐶

 𝑦𝑆 =  𝑦𝐶𝐷/𝑧𝐶                                          𝑦𝑆 =  𝑦𝐶

 𝑧𝑆 =  𝐷                                                   𝑧𝑆 =  𝑧𝐶

 𝑤𝑆 = 1                                                   𝑤𝑆 =  𝑧𝐶/𝐷

 𝑥𝑠
 𝑦𝑠
 𝑧𝑠
 𝑤𝑠

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/𝐷 0

 𝑥𝑐
 𝑦𝑐
 𝑧𝑐

1



Perspective vs. Parallel
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 Perspective Projection

 + Size varies inversely with distance - looks realistic

 - Distance and angles are not (in general) preserved

 - Parallel lines do not (in general) remain parallel

 Parallel Projection

 + Good for exact measurements

 + Parallel lines remain parallel

 - Angles are not (in general) preserved

 - Less realistic looking



Classical Projections
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Viewport transformation
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Viewport transformation
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 sx, sy – scale factors

 Matrix notation

minmax

minmax

xcxc

xvxv
sx

−

−
=

minmax

minmax

ycyc

yvyv
sy

−

−
=

















+−+−

=

1

00

00

)1,,()1,,(

minminminmin yvycsxvxcs

s

s

yxyx

yx

y

x

ppvv



Welcome to the matrix!
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1. local → global coordinates

 translate, rotate, scale, translate

2. global → camera

 translate, rotate, rotate, project

3. camera  → viewport

 translate, scale, translate

 Transformation combine = matrix multiply



3D rendering pipeline
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3D polygons

Modeling 

Transformation

Lighting

Viewing 

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

Model transformation

local → global / world coordinates

Viewport transformation

global → camera

Projection transformation

global → normalized device

Clipping

Rasterization

Texturing & Lighting
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- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #2



93

Rasterization

Rendering Pipeline

Next Lecture
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