Fundamentals of
 Computer Graphics and Image Processing Transformations, Projections (02)

doc. RNDr. Martin Madaras, PhD. martin.madaras@fmph.uniba.sk

Overview

- 2D Transformations
- Basic 2D transformations
- Matrix representation
- Matrix composition
- 3D Transformations
- Basic 3D transformations
- Same as 2D

How the lectures should look like \#1

- Ask questions, please!!!
- Be communicative
- More active you are, the better for you!
- We will go into depth as far, as there are no questions

Geometry space

- Scene
- Virtual representation of world
- Objects
- Visible objects
("real world")
- Invisible objects
(e.g. lights,
cameras, etc.)

Full scene definition

- Objects
- What objects, where, how transformed
- To be discussed early during course
, How they look - color, material, texture...
- To be discussed later during course
- Camera
- Position, target, camera parameters

Coordinate system

- Cartesian coordinates in 2D
- Origin
p xaxis
- y axis

Coordinate systems

- Global
- One for whole scene
, Local
- Individual for every model
- Pivot point
- Camera coordinates
- Window coordinates
- Units may differ
, Conversion between coordinate spaces

Global/local/camera coords.

Essential basic algebra

Point

- Position in space
- Cartesian coordinates
(x, y)
(x, y, z)
- Homogeneous coordinates
$(x, y, 1)$
$(x, y, z, 1)$
- Notation: P, A, ...

Vector

- Direction in space,
- Has no position
- Subtraction of points
- Cartesian coordinates
(x, y)
(x, y, z)
, Homogeneous coordinates
$(x, y, 0)$
$(x, y, z, 0)$
- Notation: $\vec{u}, \vec{v}, \vec{n}$

Vector

- Addition

Point + vector = point
Vector + vector $=$ vector

- Subtraction

Point - point $=$ vector
Point - vector $=$ point $+($-vector $)=$ point
Vector - vector $=$ vector $+($-vector $)=$ vector

- Multiplication

Multiplier * vector $=$ vector

Ask questions

- Ask questions, please!!!
- Be communicative
- More active you are, the better for you!

Transformations

2D Modeling Transformations

- Modeling space and World space

2D Modeling Transformations

- Transformed instances

2D Modeling Transformations

- Transformation identity

Modeling
Coordinates

2D Modeling Transformations

- Scaling applied...

Scale .3, . 3

2D Modeling Transformations

- Scaling and rotation applied...

Scale . 3, . 3
Rotate -90

2D Modeling Transformations

- Scaling, rotation and translation applied...

2D Modeling Transformations

- Translation:

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Scale:

$$
\begin{aligned}
& x^{\prime}=x^{*} s_{x} \\
& y^{\prime}=y * s_{y}
\end{aligned}
$$

, Rotation:
b $x^{\prime}=x^{*} \cos \theta-y^{*} \sin \Theta$
" $y^{\prime}=x^{*} \sin \Theta+y^{*} \cos \theta$

Transformations can be combined (with simple algebra)

2D Modeling Transformations

- Translation:

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Scale:
> $x^{\prime}=x^{*} s_{x}$
" $y^{\prime}=y^{*} s_{y}$
- Rotation:
| $x^{\prime}=x^{*} \cos \theta-y^{*} \sin \Theta$
y $y^{\prime}=x^{*} \sin \Theta+y^{*} \cos \theta$

2D Modeling Transformations

- Translation:
- $x^{\prime}=x+t_{x}$
' $y^{\prime}=y+t_{y}$
- Scale:
> $x^{\prime}=x^{*} s_{x}$
" $y^{\prime}=y^{*} s_{y}$
- Rotation:
b $x^{\prime}=x^{*} \cos \theta-y^{*} \sin \Theta$
- $y^{\prime}=x^{*} \sin \Theta+y^{*} \cos \theta$

2D Modeling Transformations

- Translation:

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Scale:

$$
\begin{aligned}
& x^{\prime}=x * s_{x} \\
& y^{\prime}=y * s_{y}
\end{aligned}
$$

- Rotation:
b $x^{\prime}=x^{*} \cos \theta-y^{*} \sin \Theta$
b $y^{\prime}=x^{*} \sin \Theta+y^{*} \cos \Theta$

2D Modeling Transformations

, Translation:
$x^{\prime}=x+t_{x}$
> $y^{\prime}=y+t_{y}$

- Scale:
$x^{\prime}=\mathrm{x}^{*} S_{x}$
${ }^{\prime} y^{\prime}=\mathrm{y}^{*} S_{y}$
- Rotation:
b $x^{\prime}=x^{*} \cos \theta-y^{*} \sin \Theta$
$y^{\prime}=x^{*} \sin \Theta+y^{*} \cos \Theta$

2D Modeling Transformations

- Translation:

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Scale:

$$
\begin{aligned}
& x^{\prime}=x^{*} s_{x} \\
& y^{\prime}=y^{*} s_{y}
\end{aligned}
$$

- Rotation:

b $x^{\prime}=x^{*} \cos \theta-y^{*} \sin \Theta$
$y^{\prime}=x^{*} \sin \Theta+y^{*} \cos \Theta$

$$
\begin{aligned}
& x^{\prime}=\left(\left(x^{*} \operatorname{sx}\right)^{*} \cos \Theta-\left(y^{*} \operatorname{sy}\right)^{*} \sin \Theta\right)+t x \\
& y^{\prime}=\left(\left(x^{*} \sin \right)^{*} \sin \Theta+\left(y^{*} \operatorname{sy}\right)^{*} \cos \Theta\right)+\text { ty }
\end{aligned}
$$

Overview

- 2D Transformations
- Basic 2D transformations
- Matrix representation
- Matrix composition
- 3D Transformations
- Basic 3D transformations
- Same as 2D

Matrix Representation

- Represent 2D transformation by a matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- Multiply matrix by column vector \Leftrightarrow transformation of a point

$$
\begin{array}{r}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad x^{\prime}=a x+b y} \\
y^{\prime}=c x+d y
\end{array}
$$

Matrix Representation

- Transformations combined by multiplication

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Matrices are a convenient and efficient way to represent a sequence of transformations!

2x2 Matrices

- What transformations can be represented by a 2×2 matrix?
- 2D Identity?

$$
x^{\prime}=x
$$

$$
y=y
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- 2D Scale around origin $(0,0)$?

$$
x^{\prime}=s_{x} * x \quad y=s_{y} * y \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What transformations can be represented by a 2×2 matrix?
- 2D Rotate around origin $(0,0)$?

$$
\begin{aligned}
& x^{\prime}=\mathrm{x} * \cos \theta-\mathrm{y} * \sin \theta \\
& y^{\prime}=\mathrm{x} * \sin \theta+\mathrm{y} * \cos \theta
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- 2D Shear?

$$
\begin{aligned}
& x^{\prime}=x+s h_{x} * y \\
& y^{\prime}=s h_{y} * x+y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What transformations can be represented by a 2×2 matrix?
- 2D Mirror over Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- 2D Mirror over (0,0)?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What transformations can be represented by a 2×2 matrix?
- 2D Translation?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Only a linear 2D transformations can be represented by a 2×2 matrix

Linear Transformations

- Linear transformations are combinations of ..
- Scale
- Rotation
- Shear
- Mirror
- Properties of linear transformations:
- Satisfies: $\quad T\left(s_{1} p_{1}+s_{2} p_{2}\right)=s_{1} T\left(p_{1}\right)+s_{2} T\left(p_{1}\right)$
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

2D Translation

- 2D translation represented by a 3×3 matrix
- Point represented in homogenous coordinates

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Homogenous Coordinates

- Add a 3rd coordinate to every 2D point
- (x, y, w) represents a point at location ($\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}$)
- ($x, y, 0$) represents a point at infinity
- $(0,0,0)$ is not allowed

Basic 2D Transformations

- Basic 2D transformations as 3×3 matrices

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { Translate }}{\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { Scale }}{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}}
\end{aligned}
$$

Affine Transformations

- Affine transformations are combinations of...
- Linear transformations, and
- Translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- Properties of affine transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

Projective Transformations

- Projective transformations:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- Properties of projective transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
, Ratios are not preserved
- Closed under composition

Overview

- 2D Transformations
- Basic 2D transformations
- Matrix representation
- Matrix composition
- 3D Transformations
- Basic 3D transformations
- Same as 2D

Matrix Composition

- Transformations can be combined by matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]} \\
& \mathrm{P}^{\prime}=\mathrm{T}\left(t_{x}, t_{y}\right) \quad \mathrm{R}(\theta)
\end{aligned}
$$

Matrix Composition

- Matrices are a convenient and efficient way to represent a sequence of transformations
- General purpose representation
- Hardware matrix multiply
- Efficiency with premultiplication
- Matrix multiplication is associative

$$
\begin{aligned}
& \mathrm{P}^{\prime}=(\mathrm{T} *(\mathrm{~S} *(\mathrm{R} * \mathrm{P}))) \\
& \mathrm{P}^{\prime}=(\mathrm{T} * \mathrm{~S} * \mathrm{R}) * \mathrm{P}
\end{aligned}
$$

Matrix Composition

- Be aware: order of transformations matters
- Matrix multiplication is not commutative

transformation order

$P^{\prime}=T * S * R * P$
"Global"
"Local"

Matrix Composition

- Be aware: order of transformations matters
- Matrix multiplication is not commutative

Problem: local rotation

Matrix Composition

- Rotate around an arbitrary point (a, b)
- Translate (a, b) to the origin
- Rotate around origin
- Translate back

Matrix Composition

- Rotate around an arbitrary point (a, b)
- Translate (a, b) to the origin
- Rotate around origin
- Translate back

$$
M=T(a, b) * R(\theta) * T(-a,-b)
$$

Matrix Composition

1. translate rotation center to origin: $\mathrm{t}\left(\mathrm{t}_{x}, \mathrm{t}_{y}\right)$
2. rotate by ϕ
3. inverse translate by $\mathrm{t}^{\prime}\left(-\mathrm{t}_{\mathrm{x}},-\mathrm{t}_{\mathrm{y}}\right)$

Matrix notation:

$$
\left(x^{\prime}, y^{\prime}, 1\right)=(x, y, 1)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
t_{x} & t_{y} & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \varphi & \sin \varphi & 0 \\
-\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-t_{x} & -t_{y} & 1
\end{array}\right)
$$

Matrix Composition

- Scale by sx, sy around arbitrary point (a, b)
- Use the same approach ...

Matrix Composition

- Scale by sx, sy around arbitrary point (a, b)
- Use the same approach ...
$\mathrm{M}=\mathrm{T}(\mathrm{a}, \mathrm{b}) * \mathrm{~S}\left(s_{x}, s_{y}\right) * \mathrm{~T}(-\mathrm{a},-\mathrm{b})$

Overview

- 2D Transformations
- Basic 2D transformations
- Matrix representation
- Matrix composition
- 3D Transformations
- Basic 3D transformations
- Same as 2D

3D Transformations

- Right-handed coordinate system
- Left-handed coordinate system

rotation direction

3D Transformations

- Same idea as 2D transformations
- Homogenous coordinates (x, y, z, w)
- 4×4 transformation matrices

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

Basic 3D Transformations

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$
Identity
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime}\end{array}\right]=$
Translation

Basic 3D Transformations

- Rotation around Z axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

- Rotation around Y axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

- Rotation around X axis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

Same as 2D

- Everything else is the same as 2D
- In fact 2D is actually 3D in OpenGL
v is either 0 or ignored

How the lectures should look like \#3

- Ask questions, please!!!
- Be communicative
- More active you are, the better for you!

Projections

Projection

- General definition:
- Maps points in n-space to m-space ($m<n$)
- In Computer Graphics:
- Map 3D camera coordinates to 2D screen coordinates

Perspective projection (P)

Orthographic projection (O)

Viewing transformation

- Convert from local/world coordinates to camera/viewport coordinates

1. rotate scene so that camera lies in z -axis
2. projection transformation
3. viewport transformation

Stage 0

Stage 1 - translate $\mathrm{P} \rightarrow \mathrm{P}^{\prime}$

Stage 2 - rotate $\mathrm{P}^{\prime} \rightarrow \mathrm{P}^{\prime \prime} \rightarrow \mathrm{P}^{\prime \prime \prime}$

Stage 2 - rotate $\mathrm{P}^{\prime} \rightarrow \mathrm{P}{ }^{\prime \prime} \rightarrow \mathrm{P}$ '"

Orthogonal projection

Orthogonal projection

" $x_{P}=\mathrm{x}$ "'

- $y_{P}=y " "$
* $z^{\prime \prime}$ is simply left out
- Matrix notation

$$
\left(x_{P}, y_{P}, z_{p}, 1\right)=\left(x^{\prime \prime \prime}, y^{\prime \prime \prime}, z^{\prime \prime \prime}, 1\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Perspective projection

Taxonomy of Projections

Taxonomy of Projections

Parallel Projection

- Center of projection is at infinity
- Direction of projection (DOP) same for all points

Orthographic Projections

- DOP perpendicular to view plane

Oblique Projections

- DOP not perpendicular to view plane

Cavalier
(DOP at 45°)

Cabinet (DOP at 63.4°)

Parallel Projection View Volume

Parallel Projection Matrix

- General parallel projection transformation

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & L_{1} \cos \phi & 0 \\
0 & 1 & L_{1} \sin \phi & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Taxonomy of Projections

Perspective Projection

- Maps points onto a view plane along projectors emitting from center of projection (COP)

Perspective Projection

- N -point perspective
- How many vanishing points?

3-point perspective

2-point perspective

I-point perspective

Perspective Projection

- Compute 2D coordinates from 3D coordinates using triangle similarity principle

Perspective Projection

- Compute 2D coordinates from 3D coordinates using triangle similarity principle

Perspective Projection

- 4×4 matrix representation

$$
\begin{aligned}
& x_{S}=x_{C} D / z_{C} \\
& y_{S}=y_{C} D / z_{C} \\
& z_{S}=D \\
& w_{S}=1
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
w_{S}
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection

4×4 matrix representation

- $x_{S}=x_{C} D / z_{C}$
- $y_{S}=y_{C} D / z_{C}$
- $z_{S}=D$
b $w_{S}=1$
depth is stored

$$
\begin{aligned}
x_{S} & =x_{C} \\
y_{S} & =y_{C} \\
z_{S} & =z_{C} \\
w_{S} & =z_{C} / D
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
w_{S}
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection

- 4×4 matrix representation

$$
\begin{aligned}
x_{S} & =x_{C} D / z_{C} \\
y_{S} & =y_{C} D / z_{C} \\
z_{S} & =D \\
w_{S} & =1
\end{aligned}
$$

$$
\begin{aligned}
x_{S} & =x_{C} \\
y_{S} & =y_{C} \\
z_{S} & =z_{C} \\
w_{S} & =z_{C} / D
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
w_{S}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection

4×4 matrix representation

$$
\begin{aligned}
x_{S} & =x_{C} D / z_{C} \\
y_{S} & =y_{C} D / z_{C} \\
z_{S} & =D \\
w_{S} & =1
\end{aligned}
$$

$$
\begin{aligned}
x_{S} & =x_{C} \\
y_{S} & =y_{C} \\
z_{S} & =z_{C} \\
w_{S} & =z_{C} / D
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
w_{S}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection

- 4×4 matrix representation

$$
\begin{aligned}
x_{S} & =x_{C} D / z_{C} \\
y_{S} & =y_{C} D / z_{C} \\
z_{S} & =D \\
w_{S} & =1
\end{aligned}
$$

$$
\begin{aligned}
x_{S} & =x_{C} \\
y_{S} & =y_{C} \\
z_{S} & =z_{C} \\
w_{S} & =z_{C} / D
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
w_{S}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
1
\end{array}\right]
$$

Perspective Projection

- 4×4 matrix representation

$$
\begin{aligned}
& x_{S}=x_{C} D / z_{C} \\
& y_{S}=y_{C} D / z_{C} \\
& z_{S}=D \\
& w_{S}=1
\end{aligned}
$$

$$
\begin{aligned}
x_{S} & =x_{C} \\
y_{S} & =y_{C} \\
z_{S} & =z_{C} \\
w_{S} & =z_{C} / D
\end{aligned}
$$

$$
\left[\begin{array}{c}
x_{S} \\
y_{S} \\
z_{S} \\
w_{S}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / D & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{C} \\
1
\end{array}\right]
$$

Perspective vs. Parallel

- Perspective Projection

, + Size varies inversely with distance - looks realistic

- Distance and angles are not (in general) preserved
- - Parallel lines do not (in general) remain parallel
- Parallel Projection
, + Good for exact measurements
, + Parallel lines remain parallel
- Angles are not (in general) preserved
> - Less realistic looking

Orthographic projection (0)

Classical Projections

Front elevation

Elevation oblique

Plan oblique

Three-point perspective

Viewport transformation

Viewport transformation

- s_{x}, s_{y} - scale factors

$$
s_{x}=\frac{x v_{\max }-x v_{\min }}{x c_{\max }-x c_{\min }} \quad s_{y}=\frac{y v_{\max }-y v_{\min }}{y c_{\max }-y c_{\min }}
$$

- Matrix notation

$$
\left(x_{v}, y_{v}, 1\right)=\left(x_{p}, y_{p}, 1\right)\left(\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
-s_{x} x c_{\text {min }}+x v_{\text {min }} & -s_{y} y c_{\text {min }}+y v_{\text {min }} & 1
\end{array}\right)
$$

Welcome to the matrix!

I. local \rightarrow global coordinates

- translate, rotate, scale, translate

2. global \rightarrow camera
, translate, rotate, rotate, project
3. camera \rightarrow viewport
t translate, scale, translate

Transformation combine = matrix multiply

3D rendering pipeline

3D polygons

How the lectures should look like \#2

- Ask questions, please!!!
- Be communicative
- More active you are, the better for you!

Next Lecture

Rasterization
 Rendering Pipeline

Acknowledgements

- Thanks to all the people, whose work is shown here and whose slides were used as a material for creation of these slides:

Matej Novotný, GSVM lectures at FMFI UK

Output of all the publications and great team work

Very best data from 3D cameras

Questions ?!

Skeletex

www.skeletex.xyz
madaras@skeletex.xyz
martin.madaras@fmph.uniba.sk

