
Fundamentals of

Computer Graphics and Image Processing

Rasterization (03)

doc. RNDr. Martin Madaras, PhD.

martin.madaras@fmph.uniba.sk

2

Last lessons summary

CG reference model

3

4

Computer Vision/ Computer Graphics

Computer Graphics

CG reference model

5

 Geometry space

 continuous

 3Dimensional

 Screen space

 discrete

 2Dimensional

3D Scene vs. 2D image

6

Geometry vs. screen space

7

3D

Continuous

Parametric

Models

2D

Discrete

Non-parametric

Pixels

3D polygon rendering

8

 Many applications use rendering of 3D polygons with

direct illumination

3D polygon rendering

9

 Many applications use rendering of 3D polygons with

direct illumination

Quake 3, ID software

3D polygon rendering

10

 Many applications use rendering of 3D polygons with

direct illumination

CATIA, Dassault Systemes

3D polygon rendering

11

 What steps are necessary to produce an image of a 3D

scene?

Ray Casting

12

 One approach is to cast rays from the camera…

Ray Casting

13

 And find intersections with the scene…

 We are going to describe different approach this lesson

3D polygon rendering

14

 Second approach is called Rasterization

 Way how to efficiently draw primitives into screen space

15

- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #1

16

Rasterization

3D rendering pipeline

17

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

3D rendering pipeline

18

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

array of vertex positions x,y,z { 0,1,0, 1,1,0, 1,0,0, 0,0,0}

OpenGL executes steps of the 3D

rendering pipeline for each polygon

3D rendering pipeline

19

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

3D rendering pipeline

20

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

3D rendering pipeline

21

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

3D rendering pipeline

22

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

3D rendering pipeline

23

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera’s view

3D rendering pipeline

24

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera’s view

Draw pixels

3D rendering pipeline

25

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
 Model transformation

 local → global coordinates

 View transformation

 global → camera

 Projection transformation

 camera → screen

 Clipping, rasterization,

texturing & Lighting

 might take place earlier

Transformations

26

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera’s view

Draw pixels

Transformations

27

P(x, y, z)

3D Object coordinates

Modeling

Transformation

3D World coordinates

Viewing

Transformation

3D Camera coordinates

Projection

Transformation

2D Camera coordinates

Window to Viewport

Transformation

2D Image coordinates

P’(x’, y’)

Transformations map points from one

coordinate system to another

Camera coordinates

28

 Canonical coordinate system

 Convention is right-handed (looking down -z)

 Convenient for projection, clipping etc.

Coordinate systems

29

 DirectX <= 9, left handed only

Local coordinates

30

 Each object has its own coordinate system

Global coordinates

31

 One system for the whole scene

Local → Global coordinates

32

 Translation

















=

1

010

001

)1,,()1,','(

ytxt

yxyx

Local → Global coordinates

33

 Rotation

















−=

100

0cossin

0sincos

)1,,()1,','(



yxyx

Local → Global coordinates

34

 All transformations combined

Transformations

35

 Transformation from one coordinate system to another

one is a composition of partial transformations:

 Translation

 Rotation

 Scaling

All transformations

36

 Model transformation

 Unify coordinates by transforming local

to global coordinates

 View transformation

 Transform global coordinates so that they are

aligned with camera coordinates

 To make projection computable

Model transformation

37

 Transformation local → global

 Combination of rotate, translate, scale

 Matrix multiplication

Model transformation

38

 Translation, rotation, scaling

















−

100

0cossin

0sincos





















100

00

00

ys

xs

















1

010

001

ytxt

Global→camera coordinates

39

 T * Ry * Rx
 Translation, rotation, rotation

 T * Ry * Rx * Rz

 if the camera is rolled

 Projection P

 orthogonal, perspective, isometric ...

Viewing Transformation

40

 Mapping from world to camera coordinates

 Eye position maps to origin

 Right vector maps to X axis

 Up vector maps to Y axis

 Back vector maps to Z axis

Finding the Viewing Transformation

41

 We have the camera (in world coordinates)

 We want T taking objects from world to camera

𝑝𝐶 = 𝑇𝑝𝑊

 Trick: find T taking objects in camera to world

𝑝𝑊 = 𝑇−1𝑝𝐶

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙
𝑚 𝑛 𝑜 𝑝

𝑥
𝑦
𝑧
𝑤

Finding the Viewing Transformation

42

 Trick: Map from camera coordinates to world

 Origin maps to eye position

 z axis maps to Back vector

 y axis maps to Up vector

 x axis maps to Right vector

 To get 𝑇−1we just need to invert 𝑇

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑟𝑥 𝑢𝑥 𝑏𝑥 𝑒𝑋
𝑟𝑦 𝑢𝑦 𝑏𝑦 𝑒𝑦
𝑟𝑧 𝑢𝑧 𝑏𝑧 𝑒𝑧
𝑟𝑤 𝑢𝑤 𝑏𝑤 𝑒𝑤

𝑥
𝑦
𝑧
𝑤

Finding the Viewing Transformation

43

 Trick: Map from camera coordinates to world

 Origin maps to eye position

 z axis maps to Back vector

 y axis maps to Up vector

 x axis maps to Right vector

 To get 𝑇−1we just need to invert 𝑇

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑟𝑥 𝑢𝑥 𝑏𝑥 𝑒𝑋
𝑟𝑦 𝑢𝑦 𝑏𝑦 𝑒𝑦
𝑟𝑧 𝑢𝑧 𝑏𝑧 𝑒𝑧
𝑟𝑤 𝑢𝑤 𝑏𝑤 𝑒𝑤

𝑥
𝑦
𝑧
𝑤

Vectors vs Positions

44

 There is a fundamental difference between vectors and

positions in homogeneous coordinates!

 Position

 In homogeneous coordinates p = {x, y, z, 1}

 Can be moved so translation will apply

 Vector

 In homogenous coordinates v = {x, y, z, 0}

 Cannot be moved, its just direction

45

Projections summary

Projection types

46

 Orthogonal

Projection types

47

 Parallel

Projection types

48

 Isometric (parallel but not orthogonal)

Projection types

49

 Perspective

Projection types

50

 Perspective

51

Viewport transformation

Viewport transformation

52

 Global coordinates

 e.g. (-50..50 cm, -50..50 cm, -50..50 cm)

 Camera coordinates

 e.g. (-1..1, -1..1, -1..1)

 Viewport (window)

 e.g. (0..1200 px, 0..800 px)

Viewport transformation

53

















+−+−

=

1

00

00

)1,,()1,,(

minminminmin yvycsxvxcs

s

s

yxyx

yx

y

x

ppvv

minmax

minmax

xcxc

xvxv
sx

−

−
=

minmax

minmax

ycyc

yvyv
sy

−

−
=

3D rendering pipeline

54

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera’s view

Draw pixels

3D rendering pipeline

55

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera’s view

Draw pixels

3D polygon rendering

56

 Closed sequence of lines

Line rasterization

57

Digital Differential Analyzer

or

Bresenham algorithm

General problem

58

 Given a continuous geometric

representation of an object

 Decide which pixels are

occupied by the object

General problem

59

Digital Differential Analyzer

60

dd = (y2 – y1) / (x2 – x1) : float

Digital Differential Analyzer

61

Pseudocode:

y = y1

for x = x1 to x2

 begin

 setpixel (x, round(y))

 y = y + dd

end

Digital Differential Analyzer

62

Watch for line slope

63

if abs(dd) > 1

 exchange x↔y

 in algorithm

Bresenham algorithm

64

 DDA requires floating point

 Bresenham works with integers only

 main idea: for each x there are only 2 possible y values,

pick the one with the smaller error. accumulate error

over iterations.

 modify for other slopes and

 orientations

Circle, ellipse rasterization

65

 Bresenham for circles (midpoint algorithm)

 Can be modified for ellipses

Filled polygon rasterization

66

Scanline algorithm

Polygon rasterization

67

Scanline algorithm:

For each scan line:

1. Find the intersections of polygon and the scan line

2. Sort the intersections by x coordinate

3. Fill the pixels between subsequent pairs of intersections

Scan-line algorithm

68

Scan-line algorithm

69

 (works also for non-convex polygons)

Filled polygon

70

 How to draw all pixels inside a polygon?

Filled polygon

71

 We need to determine INSIDE / OUTSIDE

Filled polygon

72

 We need to determine INSIDE / OUTSIDE

Filled polygon

73

 We need to determine INSIDE / OUTSIDE

Filled polygon

74

 We need to determine INSIDE / OUTSIDE

Filled polygon

75

 We need to determine INSIDE / OUTSIDE

Filled polygon

76

 We need to determine INSIDE / OUTSIDE

Filled polygon

77

 We need to determine INSIDE / OUTSIDE

Filled polygon

78

 If convex / concave vertices are handled correctly

Filled triangle

79

 Polygons defined using triangles

 Lets draw triangles instead

Filled triangle

80

 Split triangle horizontally into two parts

 Use linear interpolation to draw lines

Filled triangle

81

 Fill using horizontal lines

A B

C

Filled triangle

82

 Fill using horizontal lines

𝑋 = 𝑙𝑒𝑟𝑝(𝐴, 𝐶, 𝑡1)
𝑌 = 𝑙𝑒𝑟𝑝(𝐵, 𝐶, 𝑡1)
𝑍 = 𝑙𝑒𝑟𝑝(𝑋, 𝑌, 𝑡2)

A B

C

X Y
Z

𝑡1

𝑡2

Rasterized triangles

83

Rasterization alias

84

Aliasing

85

 continuous → discrete: artifacts might appear

 rasterization alias – jagged edges

 sampling

 creating observation of continuous phenomenon

in discrete intervals

 sampling frequency

 pixel density

Forms of alias

86

 spatial alias

 jaggy edges

 moiré

 texture

distortion

 temporal

 “wagon wheel”

Anti-aliasing

87

 general (global) anti-aliasing - supersampling

 works on all objects

 object (local) anti-aliasing

 line anti-aliasing

 silhouette anti-aliasing

 texture anti-aliasing

Super-sampling

88

 For each pixel perform multiple sub-pixel

 observations and combine the results

 Regular (grid) Random (stochastic) Poisson Jitter

Super-sampling

89

Super-sampling

90

Super-sampling

91

Next lessons

92

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

Shading and Lighting (04)

Rest of rendering pipeline - next lessons

93

3D polygons

Modeling

Transformation

Lighting

Viewing

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

Visibility, Culling, Cropping (05)

94

Shading and Lighting

Next Lecture

95

Acknowledgements

 Thanks to all the people, whose work is shown here and whose

slides were used as a material for creation of these slides:

Matej Novotný, GSVM lectures at FMFI UK

Peter Drahoš, PPGSO lectures at FIIT STU

Output of all the publications and great team work

Very best data from 3D cameras

96

www.skeletex.xyz

madaras@skeletex.xyz

martin.madaras@fmph.uniba.sk

Questions ?!

	Slide 1: Fundamentals of Computer Graphics and Image Processing Rasterization (03)
	Slide 2
	Slide 3: CG reference model
	Slide 4: Computer Vision/ Computer Graphics
	Slide 5: CG reference model
	Slide 6: 3D Scene vs. 2D image
	Slide 7: Geometry vs. screen space
	Slide 8: 3D polygon rendering
	Slide 9: 3D polygon rendering
	Slide 10: 3D polygon rendering
	Slide 11: 3D polygon rendering
	Slide 12: Ray Casting
	Slide 13: Ray Casting
	Slide 14: 3D polygon rendering
	Slide 15: How the lectures should look like #1
	Slide 16
	Slide 17: 3D rendering pipeline
	Slide 18: 3D rendering pipeline
	Slide 19: 3D rendering pipeline
	Slide 20: 3D rendering pipeline
	Slide 21: 3D rendering pipeline
	Slide 22: 3D rendering pipeline
	Slide 23: 3D rendering pipeline
	Slide 24: 3D rendering pipeline
	Slide 25: 3D rendering pipeline
	Slide 26: Transformations
	Slide 27: Transformations
	Slide 28: Camera coordinates
	Slide 29: Coordinate systems
	Slide 30: Local coordinates
	Slide 31: Global coordinates
	Slide 32: Local → Global coordinates
	Slide 33: Local → Global coordinates
	Slide 34: Local → Global coordinates
	Slide 35: Transformations
	Slide 36: All transformations
	Slide 37: Model transformation
	Slide 38: Model transformation
	Slide 39: Global→camera coordinates
	Slide 40: Viewing Transformation
	Slide 41: Finding the Viewing Transformation
	Slide 42: Finding the Viewing Transformation
	Slide 43: Finding the Viewing Transformation
	Slide 44: Vectors vs Positions
	Slide 45
	Slide 46: Projection types
	Slide 47: Projection types
	Slide 48: Projection types
	Slide 49: Projection types
	Slide 50: Projection types
	Slide 51
	Slide 52: Viewport transformation
	Slide 53: Viewport transformation
	Slide 54: 3D rendering pipeline
	Slide 55: 3D rendering pipeline
	Slide 56: 3D polygon rendering
	Slide 57: Line rasterization
	Slide 58: General problem
	Slide 59: General problem
	Slide 60: Digital Differential Analyzer
	Slide 61: Digital Differential Analyzer
	Slide 62: Digital Differential Analyzer
	Slide 63: Watch for line slope
	Slide 64: Bresenham algorithm
	Slide 65: Circle, ellipse rasterization
	Slide 66: Filled polygon rasterization
	Slide 67: Polygon rasterization
	Slide 68: Scan-line algorithm
	Slide 69: Scan-line algorithm
	Slide 70: Filled polygon
	Slide 71: Filled polygon
	Slide 72: Filled polygon
	Slide 73: Filled polygon
	Slide 74: Filled polygon
	Slide 75: Filled polygon
	Slide 76: Filled polygon
	Slide 77: Filled polygon
	Slide 78: Filled polygon
	Slide 79: Filled triangle
	Slide 80: Filled triangle
	Slide 81: Filled triangle
	Slide 82: Filled triangle
	Slide 83: Rasterized triangles
	Slide 84: Rasterization alias
	Slide 85: Aliasing
	Slide 86: Forms of alias
	Slide 87: Anti-aliasing
	Slide 88: Super-sampling
	Slide 89: Super-sampling
	Slide 90: Super-sampling
	Slide 91: Super-sampling
	Slide 92: Next lessons
	Slide 93: Rest of rendering pipeline - next lessons
	Slide 94: Next Lecture
	Slide 95: Acknowledgements
	Slide 96: Questions ?!

