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Last lessons summary



CG reference model
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Computer Vision/ Computer Graphics

Computer Graphics



CG reference model
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 Geometry space

 continuous

 3Dimensional

 Screen space

 discrete

 2Dimensional



3D Scene vs. 2D image
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Geometry vs. screen space
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3D

Continuous

Parametric

Models

2D

Discrete

Non-parametric

Pixels



3D polygon rendering
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 Many applications use rendering of 3D polygons with 

direct illumination



3D polygon rendering
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 Many applications use rendering of 3D polygons with 

direct illumination

Quake 3, ID software



3D polygon rendering
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 Many applications use rendering of 3D polygons with 

direct illumination

CATIA, Dassault Systemes



3D polygon rendering
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 What steps are necessary to produce an image of a 3D 

scene?



Ray Casting
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 One approach is to cast rays from the camera…



Ray Casting
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 And find intersections with the scene…

 We are going to describe different approach this lesson



3D polygon rendering
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 Second approach is called Rasterization

 Way how to efficiently draw primitives into screen space
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- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #1
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Rasterization



3D rendering pipeline
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3D polygons

Modeling 

Transformation

Lighting

Viewing 

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1



3D rendering pipeline
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Modeling 

Transformation

Lighting

Viewing 

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

array of vertex positions x,y,z { 0,1,0, 1,1,0, 1,0,0, 0,0,0}

OpenGL executes steps of the 3D 

rendering pipeline for each polygon



3D rendering pipeline
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3D polygons

Modeling 

Transformation

Lighting

Viewing 

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system



3D rendering pipeline
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1
Transform into 3D world coordinate system

Illuminate according to light



3D rendering pipeline
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3D rendering pipeline
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3D rendering pipeline
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3D rendering pipeline
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3D rendering pipeline
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3D polygons

Modeling 

Transformation

Lighting

Viewing 

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1
 Model transformation

 local → global coordinates

 View transformation

 global → camera

 Projection transformation

 camera → screen

 Clipping, rasterization,

texturing & Lighting

 might take place earlier



Transformations
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3D polygons

Modeling 

Transformation
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Transformation
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Clipping

Scan Conversion

2D Image

1
Transform into 3D world coordinate system

Illuminate according to light
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Transform into 2D camera coordinate system

Clip polygons outside of camera’s view

Draw pixels



Transformations
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P(x, y, z)

3D Object coordinates

Modeling 

Transformation

3D  World coordinates

Viewing 

Transformation

3D  Camera coordinates

Projection

Transformation

2D  Camera coordinates

Window to Viewport 

Transformation

2D  Image coordinates

P’(x’, y’)

Transformations map points from one 

coordinate system to another



Camera coordinates
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 Canonical coordinate system

 Convention is right-handed (looking down -z)

 Convenient for projection, clipping etc.



Coordinate systems
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 DirectX <= 9, left handed only



Local coordinates
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 Each object has its own coordinate system



Global coordinates
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 One system for the whole scene



Local → Global coordinates

32

 Translation
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Local → Global coordinates
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 Rotation
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Local → Global coordinates
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 All transformations combined



Transformations
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 Transformation from one coordinate system to another 

one is a composition of partial transformations:

 Translation

 Rotation

 Scaling



All transformations
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 Model transformation

 Unify coordinates by transforming local

to global coordinates

 View transformation

 Transform global coordinates so that they are

aligned with camera coordinates

 To make projection computable



Model transformation
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 Transformation local → global

 Combination of rotate, translate, scale

 Matrix multiplication



Model transformation
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 Translation, rotation, scaling
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Global→camera coordinates
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 T * Ry * Rx
 Translation, rotation, rotation

 T * Ry * Rx * Rz

 if the camera is rolled

 Projection P 

 orthogonal, perspective, isometric ...



Viewing Transformation
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 Mapping from world to camera coordinates

 Eye position maps to origin

 Right vector maps to X axis

 Up vector maps to Y axis

 Back vector maps to Z axis



Finding the Viewing Transformation
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 We have the camera (in world coordinates)

 We want T taking objects from world to camera

𝑝𝐶 = 𝑇𝑝𝑊

 Trick: find T taking objects in camera to world

𝑝𝑊 = 𝑇−1𝑝𝐶

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙
𝑚 𝑛 𝑜 𝑝

𝑥
𝑦
𝑧
𝑤



Finding the Viewing Transformation
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 Trick: Map from camera coordinates to world

 Origin maps to eye position

 z axis maps to Back vector

 y axis maps to Up vector

 x axis maps to Right vector

 To get 𝑇−1we just need to invert 𝑇

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑟𝑥 𝑢𝑥 𝑏𝑥 𝑒𝑋
𝑟𝑦 𝑢𝑦 𝑏𝑦 𝑒𝑦
𝑟𝑧 𝑢𝑧 𝑏𝑧 𝑒𝑧
𝑟𝑤 𝑢𝑤 𝑏𝑤 𝑒𝑤

𝑥
𝑦
𝑧
𝑤



Finding the Viewing Transformation
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 Trick: Map from camera coordinates to world

 Origin maps to eye position

 z axis maps to Back vector

 y axis maps to Up vector

 x axis maps to Right vector

 To get 𝑇−1we just need to invert 𝑇

𝑥′

𝑦′

𝑧′

𝑤′

 =

𝑟𝑥 𝑢𝑥 𝑏𝑥 𝑒𝑋
𝑟𝑦 𝑢𝑦 𝑏𝑦 𝑒𝑦
𝑟𝑧 𝑢𝑧 𝑏𝑧 𝑒𝑧
𝑟𝑤 𝑢𝑤 𝑏𝑤 𝑒𝑤

𝑥
𝑦
𝑧
𝑤



Vectors vs Positions
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 There is a fundamental difference between vectors and 

positions in homogeneous coordinates!

 Position

 In homogeneous coordinates p = {x, y, z, 1}

 Can be moved so translation will apply

 Vector

 In homogenous coordinates v = {x, y, z, 0}

 Cannot be moved, its just direction
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Projections summary



Projection types
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 Orthogonal



Projection types
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 Parallel



Projection types
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 Isometric (parallel but not orthogonal)



Projection types
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 Perspective



Projection types
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 Perspective
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Viewport transformation



Viewport transformation
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 Global coordinates

  e.g. (-50..50 cm, -50..50 cm, -50..50 cm)

 Camera coordinates

 e.g. (-1..1, -1..1, -1..1)

 Viewport (window)

 e.g. (0..1200 px, 0..800 px)



Viewport transformation
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3D rendering pipeline
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3D rendering pipeline
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3D polygon rendering
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 Closed sequence of lines



Line rasterization
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Digital Differential Analyzer

or

Bresenham algorithm



General problem
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 Given a continuous geometric

representation of an object

 Decide which pixels are

occupied by the object



General problem
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Digital Differential Analyzer
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dd = (y2 – y1) / (x2 – x1)  : float



Digital Differential Analyzer
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Pseudocode:

y = y1

for x = x1 to x2

 begin

 setpixel (x, round(y))

 y = y + dd

end



Digital Differential Analyzer
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Watch for line slope
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if abs(dd) > 1

 exchange x↔y 

 in algorithm



Bresenham algorithm
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 DDA requires floating point

 Bresenham works with integers only

 main idea: for each x there are only 2 possible y values, 

pick the one with the smaller error. accumulate error 

over iterations.

 modify for other slopes and 

   orientations



Circle, ellipse rasterization
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 Bresenham for circles (midpoint algorithm)

 Can be modified for ellipses



Filled polygon rasterization
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Scanline algorithm



Polygon rasterization
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Scanline algorithm:

For each scan line:

1. Find the intersections of polygon and the scan line

2. Sort the intersections by x coordinate

3. Fill the pixels between subsequent pairs of intersections



Scan-line algorithm
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Scan-line algorithm
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 (works also for non-convex polygons)



Filled polygon
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 How to draw all pixels inside a polygon?



Filled polygon
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 We need to determine INSIDE / OUTSIDE



Filled polygon
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 We need to determine INSIDE / OUTSIDE



Filled polygon
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 We need to determine INSIDE / OUTSIDE



Filled polygon
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 We need to determine INSIDE / OUTSIDE



Filled polygon
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 We need to determine INSIDE / OUTSIDE



Filled polygon
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 We need to determine INSIDE / OUTSIDE



Filled polygon
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 We need to determine INSIDE / OUTSIDE



Filled polygon
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 If convex / concave vertices are handled correctly



Filled triangle

79

 Polygons defined using triangles

 Lets draw triangles instead



Filled triangle
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 Split triangle horizontally into two parts

 Use linear interpolation to draw lines



Filled triangle
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 Fill using horizontal lines

A B

C



Filled triangle

82

 Fill using horizontal lines

𝑋 = 𝑙𝑒𝑟𝑝(𝐴, 𝐶, 𝑡1)
𝑌 = 𝑙𝑒𝑟𝑝(𝐵, 𝐶, 𝑡1)
𝑍 = 𝑙𝑒𝑟𝑝(𝑋, 𝑌, 𝑡2)

A B

C

X Y
Z

𝑡1

𝑡2



Rasterized triangles
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Rasterization alias

84



Aliasing

85

 continuous → discrete: artifacts might appear

 rasterization alias – jagged edges

 sampling

 creating observation of continuous phenomenon

in discrete intervals

 sampling frequency

 pixel density



Forms of alias
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 spatial alias

 jaggy edges

 moiré

 texture

distortion

 temporal

 “wagon wheel”



Anti-aliasing
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 general (global) anti-aliasing - supersampling

 works on all objects

 object (local) anti-aliasing

 line anti-aliasing

 silhouette anti-aliasing

 texture anti-aliasing



Super-sampling
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 For each pixel perform multiple sub-pixel 

   observations and  combine the results

     Regular (grid)         Random (stochastic)               Poisson                            Jitter



Super-sampling
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Super-sampling
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Super-sampling
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Next lessons
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3D polygons

Modeling 

Transformation
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Viewing 

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

Shading and Lighting (04)



Rest of rendering pipeline - next lessons
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3D polygons

Modeling 

Transformation

Lighting

Viewing 

Transformation

Projection

Transformation

Clipping

Scan Conversion

2D Image

1

Visibility, Culling, Cropping (05)
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Shading and Lighting

Next Lecture
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