Fundamentals of Computer Graphics and Image Processing Rasterization (03)

doc. RNDr. Martin Madaras, PhD. martin.madaras@fmph.uniba.sk

Last lessons summary

CG reference model

Application program

Graphical system

Output device

Screen space

Computer Vision/ Computer Graphics

CG reference model

- Geometry space
- continuous
- 3Dimensional
- Screen space
- discrete
- 2Dimensional

3D Scene vs. 2D image

Geometry vs. screen space

3D
Continuous
Parametric
Models

2D
Discrete
Non-parametric
Pixels

3D polygon rendering

- Many applications use rendering of 3D polygons with direct illumination

3D polygon rendering

- Many applications use rendering of 3D polygons with direct illumination

Quake 3, ID software

3D polygon rendering

- Many applications use rendering of 3D polygons with direct illumination

CATIA, Dassault Systemes

3D polygon rendering

- What steps are necessary to produce an image of a 3D scene?

Ray Casting

- One approach is to cast rays from the camera...

Ray Casting

- And find intersections with the scene...
- We are going to describe different approach this lesson

3D polygon rendering

- Second approach is called Rasterization
- Way how to efficiently draw primitives into screen space

How the lectures should look like \#1

- Ask questions, please!!!
- Be communicative
- More active you are, the better for you!

Rasterization

3D rendering pipeline

3D polygons

Modeling
 Transformation

\square
Lighting
$\sqrt{\square}$

$\sqrt{\square}$

Projection
Transformation
\Downarrow

Clipping
』
Scan Conversion

2D Image

3D rendering pipeline

Modeling
 Transformation

Viewing
Transformation
array of vertex positions $x, y, z\{0, I, 0, I, I, 0, I, 0,0,0,0,0\}$ $\sqrt{5}$
Projection
Transformation $\sqrt{7}$

Clipping
\sqrt{n}
Scan Conversion

2D Image

3D rendering pipeline

3D polygons

Transform into 3D world coordinate system
\square
$\sqrt{\square}$
Viewing
Transformation
\checkmark

Projection
Transformation
$\sqrt{3}$

Clipping
\checkmark
Scan Conversion

2D Image

3D rendering pipeline

3D polygons

Modeling
Transformation
$\sqrt{\square}$
 $\sqrt{\square}$
Viewing
Transformation
$\sqrt{\square}$
Projection
Transformation $\sqrt{7}$

Clipping
$\sqrt{7}$
Scan Conversion

2D Image

3D rendering pipeline

3D polygons

$\sqrt{\square}$
 $\sqrt{\square}$
Projection
Transformation $\sqrt{7}$

Clipping
$\sqrt{6}$
Scan Conversion

Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

2D Image

3D rendering pipeline

3D polygons

$\sqrt{\square}$
Lighting
\Downarrow
Viewing
Transformation
$\sqrt{\square}$
Projection
Transformation
$\sqrt{\square}$
Clipping
\checkmark
Scan Conversion

Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

2D Image

3D rendering pipeline

3D polygons

,
Lighting $\sqrt{\square}$
Viewing
Transformation $\sqrt{\square}$

Clipping $\sqrt{7}$
Scan Conversion

2D Image

Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera's view

3D rendering pipeline

3D polygons

Transformation
$\sqrt{\square}$
』
Viewing
Transformation $\sqrt{\square}$

Clipping \checkmark
Scan Conversion

Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera's view

Draw pixels

2D Image

3D rendering pipeline

 3D polygons

Projection
Transformation $\sqrt{7}$

Clipping
$\sqrt{3}$
Scan Conversion

- Model transformation
- local \rightarrow global coordinates
, View transformation
- global \rightarrow camera
- Projection transformation
, camera \rightarrow screen
- Clipping, rasterization, texturing \& Lighting
» might take place earlier

2D Image

Transformations

3D polygons

Modeling
Transformation
π
Lighting \sqrt{n}
Viewing
Transformation $\sqrt{\square}$
Projection
Transformation $\sqrt{7}$

Clipping \sqrt{n}
Scan Conversion

Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera's view

Draw pixels

2D Image

Transformations

$$
P(x, y, z)
$$

$\sqrt{5}$ 3D Object coordinates

Modeling Transformation
$\sqrt{\square}$ 3D World coordinates
Viewing Transformation
$\sqrt{\sqrt{3}}$ 3D Camera coordinates
Projection Transformation
$\sqrt{\square}$ 2D Camera coordinates
Window to Viewport Transformation
$\sqrt{\square}$ 2D Image coordinates

$P^{\prime}\left(x^{\prime}, y^{\prime}\right)$

Transformations map points from one coordinate system to another

Camera coordinates

Canonical coordinate system

* Convention is right-handed (looking down -z)
b Convenient for projection, clipping etc.

Coordinate systems

- DirectX <= 9, left handed only

Left-handed Cartesian Coordinates

Right-handed Cartesian Coordinates

Local coordinates

- Each object has its own coordinate system

Global coordinates

- One system for the whole scene

Local \rightarrow Global coordinates

- Translation

$$
\left(x^{\prime}, y^{\prime}, 1\right)=(x, y, 1)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
t_{x} & t_{y} & 1
\end{array}\right)
$$

Local \rightarrow Global coordinates

- Rotation

$$
\left(x^{\prime}, y^{\prime}, 1\right)=(x, y, 1)\left(\begin{array}{ccc}
\cos \varphi & \sin \varphi & 0 \\
-\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Local \rightarrow Global coordinates

- All transformations combined

Transformations

- Transformation from one coordinate system to another one is a composition of partial transformations:
- Translation
- Rotation
- Scaling

All transformations

- Model transformation
- Unify coordinates by transforming local to global coordinates
- View transformation
- Transform global coordinates so that they are aligned with camera coordinates
- To make projection computable

Model transformation

- Transformation local \rightarrow global
- Combination of rotate, translate, scale
- Matrix multiplication

Model transformation

Translation, rotation, scaling

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ t_{x} & t_{y} & 1\end{array}\right)\left(\begin{array}{ccc}\cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right)$

Global \rightarrow camera coordinates

* $T^{*} R_{\mathbf{y}}{ }^{*} \boldsymbol{R}_{\mathrm{X}}$
- Translation, rotation, rotation
* ${ }^{*} R_{y} * R_{x} * R_{z}$
- if the camera is rolled
- Projection \mathbf{P}
- orthogonal, perspective, isometric ...

Viewing Transformation

- Mapping from world to camera coordinates
- Eye position maps to origin
- Right vector maps to X axis
- Up vector maps to Y axis
- Back vector maps to Z axis

Finding the Viewing Transformation

- We have the camera (in world coordinates)
- We want T taking objects from world to camera

$$
p^{C}=T p^{W}
$$

Trick: find T taking objects in camera to world

$$
\begin{gathered}
p^{W}=T^{-1} p^{C} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]}
\end{gathered}
$$

Finding the Viewing Transformation

- Trick: Map from camera coordinates to world
* Origin maps to eye position
b z axis maps to Back vector
- y axis maps to Up vector
- x axis maps to Right vector

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
r_{x} & u_{x} & b_{x} & e_{X} \\
r_{y} & u_{y} & b_{y} & e_{y} \\
r_{z} & u_{z} & b_{z} & e_{z} \\
r_{w} & u_{w} & b_{w} & e_{w}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

- To get T^{-1} we just need to invert T

Finding the Viewing Transformation

- Trick: Map from camera coordinates to world
- Origin maps to eye position
b z axis maps to Back vector
- y axis maps to Up vector
- x axis maps to Right vector

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
r_{x} & u_{x} & b_{x} & e_{X} \\
r_{y} & u_{y} & b_{y} & e_{y} \\
r_{z} & u_{z} & b_{z} & e_{z} \\
r_{w} & u_{w} & b_{w} & e_{w}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

- To get T^{-1} we just need to invert T

Vectors vs Positions

- There is a fundamental difference between vectors and positions in homogeneous coordinates!
- Position
- In homogeneous coordinates $p=\{x, y, z, I\}$
- Can be moved so translation will apply
- Vector
- In homogenous coordinates $v=\{x, y, z, 0\}$
- Cannot be moved, its just direction

Projections summary

Projection types

- Orthogonal

Projection types

- Parallel

Projection types

- Isometric (parallel but not orthogonal)

Projection types

- Perspective

Projection types

- Perspective

Viewport transformation

Viewport transformation

- Global coordinates
b e.g. ($-50 . .50 \mathrm{~cm},-50 . .50 \mathrm{~cm},-50 . .50 \mathrm{~cm}$)
- Camera coordinates
- e.g. (-I..I, - I..I, - I..I)
- Viewport (window)
- e.g. (0..I $200 \mathrm{px}, 0 . .800 \mathrm{px}$)

Viewport transformation

$$
\begin{aligned}
& s_{x}=\frac{x v_{\max }-x v_{\min }}{x c_{\max }-x c_{\min }} \\
& s_{y}=\frac{y v_{\max }-y v_{\min }}{y c_{\max }-y c_{\min }}
\end{aligned}
$$

$$
\left(x_{v}, y_{v}, 1\right)=\left(x_{p}, y_{p}, 1\right)\left(\begin{array}{cc}
s_{x} & 0 \tag{array}\\
0 & s_{y} \\
-s_{x} x c_{\min }+x v_{\min } & -s_{y} y c_{\min }+y v_{\min }
\end{array}\right.
$$

3D rendering pipeline

3D polygons

Transformation
$\sqrt{7}$
Lighting $\sqrt{\square}$
Viewing
Transformation $\sqrt{\square}$

Clipping $\sqrt{5}$
Scan Conversion

Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera's view

Draw pixels

2D Image

3D rendering pipeline

3D polygons

Transformation

\checkmark
Viewing
Transformation
$\sqrt{\square}$

Clipping $\sqrt{3}$
Scan Conversion

Transform into 3D world coordinate system

Illuminate according to light

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip polygons outside of camera's view

Draw pixels

2D Image

3D polygon rendering

- Closed sequence of lines

Equilateral

Regular convex

Equiangular

Regular star

Line rasterization

Digital Differential Analyzer or
 Bresenham algorithm

General problem

- Given a continuous geometric representation of an object
- Decide which pixels are occupied by the object

General problem

Digital Differential Analyzer

$$
d d=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) \quad: \text { float }
$$

Digital Differential Analyzer

Pseudocode:

$$
\begin{aligned}
& y=y_{1} \\
& \text { for } x=x_{1} \text { to } x_{2} \\
& \text { begin } \\
& \quad \text { setpixel (} x, \text { round }(y)) \\
& y=y+d d \\
& \text { end }
\end{aligned}
$$

Digital Differential Analyzer

Watch for line slope

 if abs(dd) > Iexchange $\mathbf{x} \leftrightarrow y$ in algorithm

Bresenham algorithm

- DDA requires floating point
- Bresenham works with integers only
- main idea: for each x there are only 2 possible y values, pick the one with the smaller error. accumulate error over iterations.
p modify for other slopes and orientations

Circle, ellipse rasterization

- Bresenham for circles (midpoint algorithm)
- Can be modified for ellipses

Filled polygon rasterization

Scanline algorithm

Polygon rasterization

Scanline algorithm:

For each scan line:

1. Find the intersections of polygon and the scan line
2. Sort the intersections by x coordinate
3. Fill the pixels between subsequent pairs of intersections

Scan-line algorithm

Scan-line algorithm

- (works also for non-convex polygons)

Filled polygon

- How to draw all pixels inside a polygon?

Filled polygon

- We need to determine INSIDE / OUTSIDE

Filled polygon

- We need to determine INSIDE / OUTSIDE

Toggle inside/outside flag to "INSIDE"

Filled polygon

- We need to determine INSIDE / OUTSIDE

Toggle inside/outside flag to "OUTSIDE"

Filled polygon

- We need to determine INSIDE / OUTSIDE

What happens at these locations?

Filled polygon

- We need to determine INSIDE / OUTSIDE If we count ONCE...

Filled polygon

- We need to determine INSIDE / OUTSIDE

If we count TWICE...

Filled polygon

- We need to determine INSIDE / OUTSIDE

If we count TWICE...

Filled polygon

- If convex / concave vertices are handled correctly

Filled triangle

- Polygons defined using triangles
- Lets draw triangles instead

Filled triangle

- Split triangle horizontally into two parts
- Use linear interpolation to draw lines

Filled triangle

- Fill using horizontal lines

Filled triangle

- Fill using horizontal lines

$$
\begin{aligned}
& X=\operatorname{lerp}\left(A, C, t_{1}\right) \\
& Y=\operatorname{lerp}\left(B, C, t_{1}\right) \\
& Z=\operatorname{lerp}\left(X, Y, t_{2}\right)
\end{aligned}
$$

Rasterized triangles

Rasterization alias

Aliasing

- continuous \rightarrow discrete: artifacts might appear
p rasterization alias - jagged edges
- sampling
- creating observation of continuous phenomenon in discrete intervals
- sampling frequency
- pixel density

Forms of alias

- spatial alias
- jaggy edges
- moiré
, texture distortion
* temporal
" "wagon wheel"

Anti-aliasing

- general (global) anti-aliasing - supersampling
- works on all objects
- object (local) anti-aliasing
b line anti-aliasing
- silhouette anti-aliasing
- texture anti-aliasing

Super-sampling

- For each pixel perform multiple sub-pixel observations and combine the results

Super-sampling

Super-sampling

Super-sampling

Next lessons

3D polygons

Modeling
Transformation

Viewing
Transformation
$\sqrt{\square}$
Projection
Transformation
$\sqrt{7}$
Clipping
$\sqrt{6}$
Scan Conversion

2D Image

Rest of rendering pipeline - next lessons

3D polygons

Projection
Transformation
$\sqrt{\square}$
Clipping
』
Scan Conversion

2D Image

Next Lecture

Shading and Lighting

Acknowledgements

- Thanks to all the people, whose work is shown here and whose slides were used as a material for creation of these slides:

Matej Novotný, GSVM lectures at FMFI UK

Output of all the publications and great team work

Very best data from 3D cameras

Questions ?!

Skeletex

www.skeletex.xyz
madaras@skeletex.xyz
martin.madaras@fmph.uniba.sk

