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Overview
» Clipping

» Point Clipping

» Line Clipping

» Polygon Clipping

» Hidden Surface Removal




e

v
3D rendering pipeline

3D polygons

Modeling

Transformation
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Lighting
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Viewing

Transformation
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Projection Rasterization (05)

Transformation
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Clipping Clip polygons outside of camera’s view
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Scan Conversion

2D Image




- Ask questions, please!!!

Be communicative

More active you are, the better for you!
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2D rendering pipeline

2D geometry

' . .

Clipping » Clip and remove geometry outside of the

0y window
. Yiewport » Transform from screen coordinates to image
ransformation .

o coordinates

, » Fill pixels on the screen
Scan Conversion
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2D Image
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2D rendering pipeline
2D geometry
' . .
Clion: » Clip and remove geometry outside of the
ipping
0y window
. Yiewport » Transform from screen coordinates to image
ransformation .
o coordinates

, » Fill pixels on the screen
Scan Conversion
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2D Image




Clipping
» Avoid drawing parts of primitives outside window

Window defines part of scene being viewed
Must draw geometric primitives only inside window

Window

e

i

Screen Coordinates




| v
Clippin
» Avoid drawing parts of primitives outside window

» Window defines part of scene being viewed

» Must draw geometric primitives only inside window

Viewing
Window




» Avoid drawing parts of primitives outside window

» Points, Lines, Polygons, Circles etc.

Viewing
Window




Point Clipping

» Is point (x,y) inside clip window ?
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Line Clipping

Before Clipping
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Line Clipping
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After Clipping




Cohen-Shutherland Line Clipping
» Use simple test to classify easy cases first
» Danny Cohen, lvan Sutherland 1967




Cohen-Shutherland Line Clipping

» Classify lines quickly by AND of bit codes representing
regions of two endpoints (test for 0:inside or clipping,

|: outside)
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Cohen-Shutherland Line Clipping

» Classify lines quickly by AND of bit codes representing
regions of two endpoints (test for 0:inside or clipping,

|: outside)
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Cohen-Shutherland Line Clipping

» Classify possible clipping lines by OR of bit codes
representing regions of two endpoints (test for O: inside)
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Cohen-Shutherland Line Clipping

» Compute intersections with window boundary for
remaining lines, OR of bit codes representing the

boundary
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Cohen-Shutherland Line Clipping

» Intersect with boundary determined by the bits of the
non zero point and set 0000 for the new point
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» Create new point on the boundary
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Cohen-Shutherland Line Clipping
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Cohen-Shutherland Line Clipping

» Do the same for the next line
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Cohen-Shutherland Line Clipping
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Cohen-Shutherland Line Clipping
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Cohen-Shutherland Line Clipping
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Cohen-Shutherland Line Clipping

» Test the line again using AND
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Cohen-Shutherland Line Clipping

» Again for the last line

1001 0001 0101
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Cohen-Shutherland Line Clipping

» P9 AND P10 no longer zero
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Cohen-Shutherland Liné Clipping

» Final result
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Polygon Clipping

» Find the part of a polygon inside the clip window!?

VAN

Before Clipping
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Polygon Clipping

» Find the part of a polygon inside the clip window!?
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After Clipping




Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

VAN




Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

VAN
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Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

VAN




Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

/O




» Clip to each window boundary one at a time
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Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside
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Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside




Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside




Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside




Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside




Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside




Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside




= 2

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside




Clipping to a Boundary

» Do inside test for each point in sequence

» Insert new points when crossing the boundary
» Remove points outside of boundary

P,
P,

Window
Boundary =¥ p> Inside

Outside
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2D rendering pipeline

2D geometry

' . .

Clipping » Clip and remove geometry outside of the

0y window
. Yiewport » Transform from screen coordinates to image
ransformation .

o coordinates

, » Fill pixels on the screen
Scan Conversion

14

2D Image




Viewport Transformation

» Window to viewport mapping

Window Viewport
“W? vy
) @

! (Wx,wy) (VX,VYy)
wyl vyl

wx |« > Wx2 vx 1« » vx2

Screen Coordinates Image Coordinates
v = vxl + (wx - wxl) * (vx2 - vxl) / (wx2 - wxl);

vy = vyl + (wy - wyl) * (vy2 - vyl) / (wy2 - wyl);




» Clipping

» Point Clipping
» Line Clipping
» Polygon Clipping

» Hidden Surface Removal




Visibility

wireframe model front faces

=

silhouette visible faces, edges

N
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Motivation

» Surfaces may be back-facing

» Surfaces may be occluded
» Surfaces may overlap in the image plane
» Surfaces may intersect

back-facing
polygon

b 49




3D rendering pipeline

3D polygons

Modeling

Transformation
9

Lighting
9 » Somewhere here we have to determine

Viewing

Transformation which objects are visible and which are
A hidden

Projection

Transformation
g

Clipping
g
Scan Conversion

2D Image




» Clipping

» Point Clipping
» Line Clipping
» Polygon Clipping
» Hidden Surface Removal
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Optimizing visibility

» Get rid of objects that are surely not visible

» Frustum culling

» Occlusion culling

» Back-face culling
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Back-face culling

» Which object faces are visible?

» Remember normal vector (face orientation)




Frustum culling
» 6 planes

Inside = visible volume
» Is a point is inside!?
» Object bounding box
Speed up




Occlusion culling

» Some objects are fully occluded by others
» Spatial relations between objects
» Portals, occlusion culling

» Realtime rendering




Portal culling

Some parts of the scene
are not visible from some
other parts of the scene




Optimizing visibility

view frustum m detail

backface

occlusion




» Back-face culling
» Depth sort
y Z-Buffer

} 58 gi%%

bl



v

Back-face culling

» How do we test back-facing polygons !

» Dot product the normal and view direction

b 59

N =(a,b,c)

P,® \ ®p.

N

back-
facing
polygon

N+V >0
Origin



Surface Normals

» Normal
» Cross product of surface tangent vectors
» Length normalized to |




Vertex / Fragment Normals

» Dot product the normal and view direction

» Fragment normals can be interpolated from vertex normals

profile view

interpolated
normals

face normals vertex normal

a

@ www.scratchapixel.com
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3D rendering pipeline

3D polygons

Modeling
Transformation .
g &= )» Back-face culling
Lighting

Vie\,‘ving » Remove all polygons that are back-facing

Transformation

\'
Projection

Transformation

& \
Clipping N hﬁ ,
3 back- ’ '
- facing
Scan Conversion polygon

2D Image




Depth sort
» “Painter’s algorithm”

» Sort surfaces by maximum depth

» Draw surfaces in back to front order

eye

/

i P! >
depth sort
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Painter’s algorithm

» Sort faces in a back-to-front order, render

57 A
' - :
projection

plane

/

/
O

old pixels
4Z

» New pixels over-write \




Painter’s algorithm problems
» Intersecting faces

» Cyclically overlapping faces

» Redundant rendering




3D rendering pipeline

3D polygons

Modeling » Sorting is often O(n log n)

Transformation

T » Usually, software implementation only
Lighting

¥
Viewing

» Mostly using BSP-trees

Transformation

\'
Projection

Transformation
g

Clipping
g &= Depth sort

Scan Conversion

2D Image

66
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Other algorithms

» Warnock algorithm

» subdivide screen into a quadtree until e
whole cell empty or whole cell inside polygons } ;f@

» Reversed painter’s algorithm

» paint front-to-back and paint only empty areas

» Z-buffer

» remember z-value for each pixel and only paint when new z is
higher
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Z-Buffer

» Also known as depth buffering

» Stores closest depth of objects for every pixel
» Draw only pixels with less depth
» Depths are interpolated between vertices

4




Z-Buffer

» works in screen space
» z-buffer wxh

» for each 0=<x=<w,0=y<h:z-buffer([x,yl«=z_.

for each face:
rasterize it into pixels {x,vy,z}

for each face’s pixel (x,y,z):
if z < z-buffer[x,y]

then
z-buffer[x,y]—z

and screen[x,y]«<color
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Z-buffer pros and cons
» GPU support

» precision issues might occur

» z-buffer test before per-pixel-lighting or pixel shading
saves a lot of redundant work

» memory demands (widthxheightXprecision)

can be reduced by scanline (widthX | Xprecision)




Z-Bufter

A simple three-dimensional scene

/-buffer representation

71 3




3D rendering pipeline

3D polygons

Modeling
Transformation

12

Lighting

¥

Viewing
Transformation

Al

Projection
Transformation

L

Clipping

.14

Scan Conversion

2D Image

72

» Sorting not needed
» Excellent for hardware

» Requires additional memory to store
the depth values

» Subject to aliasing

&= ) /-Buffer
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» Can be solved in different ways
» Painter’s algorithm / Depth sort

» Binary space partitioning (BSP)
» Warnock algorithm (Quadtree)
» Z-buffering

» Raycasting / Raytracing
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Culling

» Viewing-frustum culling
» Back-face culling
» Contribution culling (LoD)

» Occlusion culling
» Potentially visible set (PVYS)
» Portal rendering




Textures and Mappings
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