Fundamentals of
Computer Graphics and Image Processing

Visibility, Culling, Clipping (05)

doc. RNDr. Martin Madaras, PhD.
martin.madaras@fmph.uniba.sk

Overview
» Clipping

» Point Clipping

» Line Clipping

» Polygon Clipping

» Hidden Surface Removal

e

v
3D rendering pipeline

3D polygons

Modeling

Transformation
9

Lighting

¥
Viewing

Transformation

Al

Projection Rasterization (05)

Transformation
g

Clipping Clip polygons outside of camera’s view

O
Scan Conversion

2D Image

- Ask questions, please!!!

Be communicative

More active you are, the better for you!

> _ 3 v v .
2D rendering pipeline

2D geometry

' . .

Clipping » Clip and remove geometry outside of the

0y window
. Yiewport » Transform from screen coordinates to image
ransformation .

o coordinates

, » Fill pixels on the screen
Scan Conversion

14

2D Image

J - = _ R e Y
2D rendering pipeline
2D geometry
' . .
Clion: » Clip and remove geometry outside of the
ipping
0y window
. Yiewport » Transform from screen coordinates to image
ransformation .
o coordinates

, » Fill pixels on the screen
Scan Conversion

14

2D Image

Clipping
» Avoid drawing parts of primitives outside window

Window defines part of scene being viewed
Must draw geometric primitives only inside window

Window

e

i

Screen Coordinates

| v
Clippin
» Avoid drawing parts of primitives outside window

» Window defines part of scene being viewed

» Must draw geometric primitives only inside window

Viewing
Window

» Avoid drawing parts of primitives outside window

» Points, Lines, Polygons, Circles etc.

Viewing
Window

Point Clipping

» Is point (x,y) inside clip window ?

wy2

(>.<,y)

wyl
wx | < > Wx2

Window

inside
(x >=
(x <=
(y >=
(y <=

wxl) &&
wx2) &&
wyl) &&
wy2) ;

Line Clipping

Before Clipping

>

Line Clipping

P,7
P,8
p,— "4
i
P,5

After Clipping

Cohen-Shutherland Line Clipping
» Use simple test to classify easy cases first
» Danny Cohen, lvan Sutherland 1967

Cohen-Shutherland Line Clipping

» Classify lines quickly by AND of bit codes representing
regions of two endpoints (test for 0:inside or clipping,

|: outside)
I37
\\
F’1\ . _p, N P,
P, /P6 P10
P5 P9
Bit 1 Bit 2

Bit 4

Cohen-Shutherland Line Clipping

» Classify lines quickly by AND of bit codes representing
regions of two endpoints (test for 0:inside or clipping,

|: outside)
PT
\\
P1\ o _p, ~~ 3
P, /P6 Pio
P5 P9
Bit 1 Bit 2

Bit 4

Cohen-Shutherland Line Clipping

» Classify possible clipping lines by OR of bit codes
representing regions of two endpoints (test for O: inside)

\\ Bit 4

Bit 1 Bit 2

Cohen-Shutherland Line Clipping

» Compute intersections with window boundary for
remaining lines, OR of bit codes representing the

boundary
PT
\\ Bit 4
\ P
/P6 Pio
— Bit 3
P5 P9

Bit 1 Bit 2

Cohen-Shutherland Line Clipping

» Intersect with boundary determined by the bits of the
non zero point and set 0000 for the new point

P
\\ Bit 4
N
3
Ps Pio
/ / Bit 3
Ps P

Bit 1 Bit 2

» Create new point on the boundary

1001 P0QO1 0101
\\ Bit 4
S p
1000 P,—0000 " * 6100
,/PG /Pm Bit 3
1010 ° 0010 Py 0110
Bit 1 Bit 2

Y (‘J g & b o ‘ ‘V

Cohen-Shutherland Line Clipping

1001 POQO1 0101
\\ Bit 4
B
P.—T000 4 8
1000 370000 0100
Ps Pio
./ ~ Bit 3
1010 > 0010 Py 0110

Bit 1 Bit 2

Cohen-Shutherland Line Clipping

» Do the same for the next line

1001 POQO1 0101
\\ Bit 4
~
1000 Ps—0000 ¢ "8100
/P6 Pio
, Bit 3
1010 ° 0010 P 0110

Bit 1 Bit 2

Y (‘J g & b o ‘ ‘V

Cohen-Shutherland Line Clipping

1001 POQO1 0101
\ Bit 4
~p
1000 Ps—0000 " * 6100
/P6 Pio
, Bit 3
1010 ° 0010 Pq 0110

Bit 1 Bit 2

Y (‘J g & b o ‘ ‘V

Cohen-Shutherland Line Clipping

1001 POQO1 0101
\ Bit 4
~p
1000 Ps—0000 " * 6100
/P6 Pio
, Bit 3
1010 ° 0010 Pq 0110

Bit 1 Bit 2

Y (‘J g & b o ‘ ‘V

Cohen-Shutherland Line Clipping

1001 0001 0101

P P
1000 P;=0000 6100

1010

Bit 1 Bit 2

| v o -
Cohen-Shutherland Line Clipping

» Test the line again using AND

1001 0001 0101
P’T
\ Bit 4
P,8
P
1000 Ps—0000 * 0100
/P6 P
, Bit 3
1010 T 0010 Py 0110

Bit 1 Bit 2

O >
Cohen-Shutherland Line Clipping

» Again for the last line

1001 0001 0101
P,
\ Bit 4
I:’,8
P
/P6 I:’10
’ Bit 3
1010 0010 P 0110

Bit 1 Bit 2

O >
Cohen-Shutherland Line Clipping

» P9 AND P10 no longer zero

1001 0001 0101
P’T
\ Bit 4
P,S
P
1000 P,—0000 * 0100
Pe P10
£ L mis

Bit 1 Bit 2

Cohen-Shutherland Liné Clipping

» Final result

1001 0001 0101
P’T
\ Bit 4
P,S
—P
1000 P;—0000 * 0100
/P6
, Bit 3
1010 > 0010 0110

Bit 1

Bit 2

Polygon Clipping

» Find the part of a polygon inside the clip window!?

VAN

Before Clipping

. (‘J g & b o = ‘ ‘V

Polygon Clipping

» Find the part of a polygon inside the clip window!?

/\

-

After Clipping

Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

VAN

Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

VAN

~—
N
&

Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

VAN

Sutherland—-Hodgman Clipping

» Clip to each window boundary one at a time

/O

» Clip to each window boundary one at a time

N €T T,
N A

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside

N €T T,
N A

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window
Boundary Inside

Qutside

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside

= 2

Clipping to a Boundary
» Do inside test for each point in sequence
» Insert new points when crossing the boundary

» Remove points outside of boundary

Window

Boundary Inside

Outside

Clipping to a Boundary

» Do inside test for each point in sequence

» Insert new points when crossing the boundary
» Remove points outside of boundary

P,
P,

Window
Boundary =¥ p> Inside

Outside

> _ 3 v v .
2D rendering pipeline

2D geometry

' . .

Clipping » Clip and remove geometry outside of the

0y window
. Yiewport » Transform from screen coordinates to image
ransformation .

o coordinates

, » Fill pixels on the screen
Scan Conversion

14

2D Image

Viewport Transformation

» Window to viewport mapping

Window Viewport
“W? vy
) @

! (Wx,wy) (VX,VYy)
wyl vyl

wx |« > Wx2 vx 1« » vx2

Screen Coordinates Image Coordinates
v = vxl + (wx - wxl) * (vx2 - vxl) / (wx2 - wxl);

vy = vyl + (wy - wyl) * (vy2 - vyl) / (wy2 - wyl);

» Clipping

» Point Clipping
» Line Clipping
» Polygon Clipping

» Hidden Surface Removal

Visibility

wireframe model front faces

=

silhouette visible faces, edges

N

| v
Motivation

» Surfaces may be back-facing

» Surfaces may be occluded
» Surfaces may overlap in the image plane
» Surfaces may intersect

back-facing
polygon

b 49

3D rendering pipeline

3D polygons

Modeling

Transformation
9

Lighting
9 » Somewhere here we have to determine

Viewing

Transformation which objects are visible and which are
A hidden

Projection

Transformation
g

Clipping
g
Scan Conversion

2D Image

» Clipping

» Point Clipping
» Line Clipping
» Polygon Clipping
» Hidden Surface Removal

&

v
Optimizing visibility

» Get rid of objects that are surely not visible

» Frustum culling

» Occlusion culling

» Back-face culling

v |
Back-face culling

» Which object faces are visible?

» Remember normal vector (face orientation)

Frustum culling
» 6 planes

Inside = visible volume
» Is a point is inside!?
» Object bounding box
Speed up

Occlusion culling

» Some objects are fully occluded by others
» Spatial relations between objects
» Portals, occlusion culling

» Realtime rendering

Portal culling

Some parts of the scene
are not visible from some
other parts of the scene

Optimizing visibility

view frustum m detail

backface

occlusion

» Back-face culling
» Depth sort
y Z-Buffer

} 58 gi%%

bl

v

Back-face culling

» How do we test back-facing polygons !

» Dot product the normal and view direction

b 59

N =(a,b,c)

P,® \ ®p.

N

back-
facing
polygon

N+V >0
Origin

Surface Normals

» Normal
» Cross product of surface tangent vectors
» Length normalized to |

Vertex / Fragment Normals

» Dot product the normal and view direction

» Fragment normals can be interpolated from vertex normals

profile view

interpolated
normals

face normals vertex normal

a

@ www.scratchapixel.com

| V- |
3D rendering pipeline

3D polygons

Modeling
Transformation .
g &=)» Back-face culling
Lighting

Vie\,‘ving » Remove all polygons that are back-facing

Transformation

\'
Projection

Transformation

& \
Clipping N hﬁ ,
3 back- ’ '
- facing
Scan Conversion polygon

2D Image

Depth sort
» “Painter’s algorithm”

» Sort surfaces by maximum depth

» Draw surfaces in back to front order

eye

/

i P! >
depth sort

. v
Painter’s algorithm

» Sort faces in a back-to-front order, render

57 A
' - :
projection

plane

/

/
O

old pixels
4Z

» New pixels over-write \

Painter’s algorithm problems
» Intersecting faces

» Cyclically overlapping faces

» Redundant rendering

3D rendering pipeline

3D polygons

Modeling » Sorting is often O(n log n)

Transformation

T » Usually, software implementation only
Lighting

¥
Viewing

» Mostly using BSP-trees

Transformation

\'
Projection

Transformation
g

Clipping
g &= Depth sort

Scan Conversion

2D Image

66

| v |
Other algorithms

» Warnock algorithm

» subdivide screen into a quadtree until e
whole cell empty or whole cell inside polygons } ;f@

» Reversed painter’s algorithm

» paint front-to-back and paint only empty areas

» Z-buffer

» remember z-value for each pixel and only paint when new z is
higher

>

Z-Buffer

» Also known as depth buffering

» Stores closest depth of objects for every pixel
» Draw only pixels with less depth
» Depths are interpolated between vertices

4

Z-Buffer

» works in screen space
» z-buffer wxh

» for each 0=<x=<w,0=y<h:z-buffer([x,yl«=z_.

for each face:
rasterize it into pixels {x,vy,z}

for each face’s pixel (x,y,z):
if z < z-buffer[x,y]

then
z-buffer[x,y]—z

and screen[x,y]«<color

v v

Z-buffer pros and cons
» GPU support

» precision issues might occur

» z-buffer test before per-pixel-lighting or pixel shading
saves a lot of redundant work

» memory demands (widthxheightXprecision)

can be reduced by scanline (widthX | Xprecision)

Z-Bufter

A simple three-dimensional scene

/-buffer representation

71 3

3D rendering pipeline

3D polygons

Modeling
Transformation

12

Lighting

¥

Viewing
Transformation

Al

Projection
Transformation

L

Clipping

.14

Scan Conversion

2D Image

72

» Sorting not needed
» Excellent for hardware

» Requires additional memory to store
the depth values

» Subject to aliasing

&=) /-Buffer

v

DT e

» Can be solved in different ways
» Painter’s algorithm / Depth sort

» Binary space partitioning (BSP)
» Warnock algorithm (Quadtree)
» Z-buffering

» Raycasting / Raytracing

v

Culling

» Viewing-frustum culling
» Back-face culling
» Contribution culling (LoD)

» Occlusion culling
» Potentially visible set (PVYS)
» Portal rendering

Textures and Mappings

. v
Acknowledgements

» Thanks to all the people, whose work is shown here and whose
slides were used as a material for creation of these slides:

Matej Novotny, GSVM lectures at FMFI UK

SEEEAL- Peter Drahos, PPGSO lectures at FIIT STU
Output of all the publications and great team work
Skeletex
Phoctones Very best data from 3D cameras

Focuyzad on 3D

www.skeletex.xyz
madaras@skeletex.xyz

martin.madaras@fmph.uniba.sk

ERS[;.
2.

s
cecc STU TECHNISCHE -
eeee FINIT UNIVERSITAT
e & & 0 WIEN

IANA D

v SViy
Vengis

AF

lllpll

—~
PhcotonaSs N7 Svnertial @
N Synertial oL 0CELL

%,

	Slide 1: Fundamentals of Computer Graphics and Image Processing Visibility, Culling, Clipping (05)
	Slide 2: Overview
	Slide 3: 3D rendering pipeline
	Slide 4: How the lectures should look like #1
	Slide 5: 2D rendering pipeline
	Slide 6: 2D rendering pipeline
	Slide 7: Clipping
	Slide 8: Clipping
	Slide 9: Clipping
	Slide 10: Point Clipping
	Slide 11: Line Clipping
	Slide 12: Line Clipping
	Slide 13: Cohen-Shutherland Line Clipping
	Slide 14: Cohen-Shutherland Line Clipping
	Slide 15: Cohen-Shutherland Line Clipping
	Slide 16: Cohen-Shutherland Line Clipping
	Slide 17: Cohen-Shutherland Line Clipping
	Slide 18: Cohen-Shutherland Line Clipping
	Slide 19: Cohen-Shutherland Line Clipping
	Slide 20: Cohen-Shutherland Line Clipping
	Slide 21: Cohen-Shutherland Line Clipping
	Slide 22: Cohen-Shutherland Line Clipping
	Slide 23: Cohen-Shutherland Line Clipping
	Slide 24: Cohen-Shutherland Line Clipping
	Slide 25: Cohen-Shutherland Line Clipping
	Slide 26: Cohen-Shutherland Line Clipping
	Slide 27: Cohen-Shutherland Line Clipping
	Slide 28: Cohen-Shutherland Line Clipping
	Slide 29: Polygon Clipping
	Slide 30: Polygon Clipping
	Slide 31: Sutherland–Hodgman Clipping
	Slide 32: Sutherland–Hodgman Clipping
	Slide 33: Sutherland–Hodgman Clipping
	Slide 34: Sutherland–Hodgman Clipping
	Slide 35: Sutherland–Hodgman Clipping
	Slide 36: Clipping to a Boundary
	Slide 37: Clipping to a Boundary
	Slide 38: Clipping to a Boundary
	Slide 39: Clipping to a Boundary
	Slide 40: Clipping to a Boundary
	Slide 41: Clipping to a Boundary
	Slide 42: Clipping to a Boundary
	Slide 43: Clipping to a Boundary
	Slide 44: Clipping to a Boundary
	Slide 45: 2D rendering pipeline
	Slide 46: Viewport Transformation
	Slide 47: Overview
	Slide 48: Visibility
	Slide 49: Motivation
	Slide 50: 3D rendering pipeline
	Slide 51: Basic algorithms for HSR
	Slide 52: Optimizing visibility
	Slide 53: Back-face culling
	Slide 54: Frustum culling
	Slide 55: Occlusion culling
	Slide 56: Portal culling
	Slide 57: Optimizing visibility
	Slide 58: Basic algorithms for HSR
	Slide 59: Back-face culling
	Slide 60: Surface Normals
	Slide 61: Vertex / Fragment Normals
	Slide 62: 3D rendering pipeline
	Slide 63: Depth sort
	Slide 64: Painter’s algorithm
	Slide 65: Painter’s algorithm problems
	Slide 66: 3D rendering pipeline
	Slide 67: Other algorithms
	Slide 68: Z-Buffer
	Slide 69: Z-Buffer
	Slide 70: Z-buffer pros and cons
	Slide 71: Z-Buffer
	Slide 72: 3D rendering pipeline
	Slide 73: Visibility
	Slide 74: Culling
	Slide 75: Next Lecture
	Slide 76: Acknowledgements
	Slide 77: Questions ?!

