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Computer Graphics
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 Image processing

 Representing and manipulation of 2D images

 Modeling

 Representing and manipulation of 2D and 3D objects

 Animation

 Simulating changes over time

 Rendering

 Constructing images from virtual models
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- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #1
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 light refraction

 mutual object reflection

 caustics

 color bleeding

 (soft) shadows

Towards Photorealism

http://math.hws.edu/eck

http://graphics.ucsd.edu/~henrik/
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Refraction & Caustics
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Global Illumination



Introduction
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Raycasting



3D Rendering
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 Color of each pixel on the view plane depends on the 

radiance emanating from visible surfaces



Ray Casting
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 For each sample ...

 Construct ray from eye position through view plane

 Find first surface intersected by ray through pixel

 Compute color sample based on surface radiance



Ray Casting
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 For each sample ...

 Construct ray from eye position through view plane

 Find first surface intersected by ray through pixel

 Compute color sample based on surface radiance



Ray Casting
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 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}



Ray Casting
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 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}



Ray Construction
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Ray Construction
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 2D example



Ray Casting
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 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}



Ray-Scene Intersection
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 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees



Ray-Sphere Intersection
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 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Sphere: |𝑃 − 𝑂|2 − 𝑟2 = 0



Ray-Sphere Intersection I
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 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Sphere: |𝑃 − 𝑂|2 − 𝑟2 = 0

 Algebraic method:



Ray-Sphere Intersection II
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 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Sphere: |𝑃 − 𝑂|2 − 𝑟2 = 0

 Geometric method:



Ray-Sphere Intersection
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 We need normal vector at intersection for lighting 

calculations



Ray-Sphere Intersection
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 Multiple possible scenarios



Ray-Scene Intersection
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 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees



Ray-Triangle Intersection
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 First, intersect ray with plane

 Then, check if the point is inside triangle



Ray-Plane Intersection
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 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Plane: (𝑃 − 𝐿)  ∙ 𝑁 = 0

 Algebraic method:



Ray-Triangle Intersection
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 Check if the point is inside triangle

 Algebraic method:



Ray-Triangle Intersection II
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 Check if the point is inside parametrically



Other Ray-Primitive Intersection
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 Cone, Cylinder, Ellipsoid

 Similar to sphere

 Box

 Intersect 3 front-facing planes, return closest

 Convex Polygon

 Same as triangle

 Concave polygon

 Same plane intersection

 Complex point-in-polygon test



Ray-Scene Intersection

28

 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees



Ray-Scene Intersection
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 Find intersection with closest primitive in group 

Intersection FindIntersection(Ray ray, Scene scene) {

   min_t = infinity

   min_primitive = NULL

   For each primitive in scene {

      t = Intersect(ray, primitive);

      if (t > 0 && t < min_t) {

         min_primitive = primitive

         min_t = t

      }

   }

   return Intersection(min_t, min_primitive)

}



Ray-Scene Intersection
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 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees



Ray-Scene Intersection
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 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees



Bounding Volumes

32

 Check intersection with simple shape first



Bounding Volumes
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 Check intersection with simple shape first



Bounding Volume Hierarchies
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 Build hierarchy of bounding volumes

 Bounding volume of interior node contains all children



Bounding Volume Hierarchies
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 Use hierarchy to accelerate ray intersections

 Intersect node contents only if hit bounding volume



Ray-Scene Intersection
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 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees



Uniform Grid
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 Construct uniform grid over scene

 Index primitives according to overlaps with grid cells



Uniform Grid
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 Trace rays through grid cells

 Only intersect with primitives from traversed cells



Uniform Grid
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 Potential problems:

 How to choose grid size ?

 Fine grid => Too computationally expensive

 Coarse grid => Little benefit



Octree
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 Construct adaptive grid over scene

 Recursively subdivide box-shaped cells into 8 octants

 4 quadrants in 2D (Quadtree)

 Index primitives by overlap with cells



Octree
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 Trace rays through neighbour cells

 Fewer cells

 More complex neighbour finding



Binary Space Partition (BSP) Tree
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 Recursively partition space by planes

 Every cell is a convex polyhedron



Binary Space Partition (BSP) Tree
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 Simple recursive algorithms

 Example: Point finding



Binary Space Partition (BSP) Tree
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 Trace rays by recursion on trees

 BSP construction enables simple front-to-back traversal



Other Accelerations

45

 Screen space coherence

 Check last hit first

 Beam tracing

 Pencil tracing

 Memory coherence

 Large screens

 Parallelism

 Ray tracing is “embarrassingly parallelizable”



Ray Casting
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 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}



Shading
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 Must derive computer models for ...

 Emission at light sources

 Scattering at surfaces

 Reception at camera

 Desirable features ...

 Concise

 Efficient to compute

 “Accurate”



Overview
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 Direct Illumination

 Emission at light sources

 Scattering at surfaces

 Gouraud shading

 Global Illumination

 Shadows

 Refractions

 Inter-object reflections



Introduction
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Raytracing



Ray Tracing
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 Rays are casted and recursively traced

 Secondary reflected, refracted and shadow rays are 

casted



Ray Tracing
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 Photorealistic rendering

 Global illumination technique



Local Illumination
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Global Illumination
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Radiosity
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 Physically based

 Object hit by light becomes 

a new light source

 Not only object-light

interaction

 But also object-object

light interaction

 Energy exchange

between objects



General situation
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Raytracing vs. radiosity
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http://www.soe.ucsc.edu/classes/cmps161/Winter04/projects/aames/index.htm
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- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #2
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NVIDIA RTX

- NVIDIA DLSS

- Deep Learning Super Sampling (DLSS) 

- Neural network + Tensor cores

-  convolutional auto-encoder neural network

- Raytracing (trained to recognize RT effects)

- edge enhancement

- spatial anti-aliasing (supersampling to 64 samples per pixel)

- Denoising (temporal feedback)

- Upscaling (retaining high frequency data)

- DLSS 2.0

-  temporal anti-aliasing upsampling (TAAU)

- DLSS 3.0

-  motion interpolation + Optical Flow Accelerator (OFA)

- DLSS 3.5

- multiple denoising algorithms replaced with a single AI model trained on 5x more data
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DLSS inference
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DLSS training
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NVIDIA DLSS

- DLSS (v 3.5)

- New Ray Reconstruction Enhances Ray Tracing with AI
- https://youtu.be/sGKCrcNsVzo

https://youtu.be/sGKCrcNsVzo
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www.skeletex.xyz
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Questions ?!
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