
Fundamentals of

Computer Graphics and Image Processing

Raycasting (08)

doc. RNDr. Martin Madaras, PhD.

martin.madaras@fmph.uniba.sk

Computer Graphics

2

 Image processing

 Representing and manipulation of 2D images

 Modeling

 Representing and manipulation of 2D and 3D objects

 Animation

 Simulating changes over time

 Rendering

 Constructing images from virtual models

3

- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #1

4

 light refraction

 mutual object reflection

 caustics

 color bleeding

 (soft) shadows

Towards Photorealism

http://math.hws.edu/eck

http://graphics.ucsd.edu/~henrik/

5

Refraction & Caustics

6

Global Illumination

Introduction

7

Raycasting

3D Rendering

8

 Color of each pixel on the view plane depends on the

radiance emanating from visible surfaces

Ray Casting

9

 For each sample ...

 Construct ray from eye position through view plane

 Find first surface intersected by ray through pixel

 Compute color sample based on surface radiance

Ray Casting

10

 For each sample ...

 Construct ray from eye position through view plane

 Find first surface intersected by ray through pixel

 Compute color sample based on surface radiance

Ray Casting

11

 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Ray Casting

12

 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Ray Construction

13

Ray Construction

14

 2D example

Ray Casting

15

 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Ray-Scene Intersection

16

 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Ray-Sphere Intersection

17

 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Sphere: |𝑃 − 𝑂|2 − 𝑟2 = 0

Ray-Sphere Intersection I

18

 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Sphere: |𝑃 − 𝑂|2 − 𝑟2 = 0

 Algebraic method:

Ray-Sphere Intersection II

19

 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Sphere: |𝑃 − 𝑂|2 − 𝑟2 = 0

 Geometric method:

Ray-Sphere Intersection

20

 We need normal vector at intersection for lighting

calculations

Ray-Sphere Intersection

21

 Multiple possible scenarios

Ray-Scene Intersection

22

 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Ray-Triangle Intersection

23

 First, intersect ray with plane

 Then, check if the point is inside triangle

Ray-Plane Intersection

24

 Ray: 𝑃 = 𝑃0 + 𝑡𝑉

 Plane: (𝑃 − 𝐿) ∙ 𝑁 = 0

 Algebraic method:

Ray-Triangle Intersection

25

 Check if the point is inside triangle

 Algebraic method:

Ray-Triangle Intersection II

26

 Check if the point is inside parametrically

Other Ray-Primitive Intersection

27

 Cone, Cylinder, Ellipsoid

 Similar to sphere

 Box

 Intersect 3 front-facing planes, return closest

 Convex Polygon

 Same as triangle

 Concave polygon

 Same plane intersection

 Complex point-in-polygon test

Ray-Scene Intersection

28

 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Ray-Scene Intersection

29

 Find intersection with closest primitive in group

Intersection FindIntersection(Ray ray, Scene scene) {

 min_t = infinity

 min_primitive = NULL

 For each primitive in scene {

 t = Intersect(ray, primitive);

 if (t > 0 && t < min_t) {

 min_primitive = primitive

 min_t = t

 }

 }

 return Intersection(min_t, min_primitive)

}

Ray-Scene Intersection

30

 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Ray-Scene Intersection

31

 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Bounding Volumes

32

 Check intersection with simple shape first

Bounding Volumes

33

 Check intersection with simple shape first

Bounding Volume Hierarchies

34

 Build hierarchy of bounding volumes

 Bounding volume of interior node contains all children

Bounding Volume Hierarchies

35

 Use hierarchy to accelerate ray intersections

 Intersect node contents only if hit bounding volume

Ray-Scene Intersection

36

 Intersections with geometric primitives

 Sphere

 Triangle

 Groups of primitives (scene)

 Acceleration Techniques

 Bounding volume hierarchies

 Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Uniform Grid

37

 Construct uniform grid over scene

 Index primitives according to overlaps with grid cells

Uniform Grid

38

 Trace rays through grid cells

 Only intersect with primitives from traversed cells

Uniform Grid

39

 Potential problems:

 How to choose grid size ?

 Fine grid => Too computationally expensive

 Coarse grid => Little benefit

Octree

40

 Construct adaptive grid over scene

 Recursively subdivide box-shaped cells into 8 octants

 4 quadrants in 2D (Quadtree)

 Index primitives by overlap with cells

Octree

41

 Trace rays through neighbour cells

 Fewer cells

 More complex neighbour finding

Binary Space Partition (BSP) Tree

42

 Recursively partition space by planes

 Every cell is a convex polyhedron

Binary Space Partition (BSP) Tree

43

 Simple recursive algorithms

 Example: Point finding

Binary Space Partition (BSP) Tree

44

 Trace rays by recursion on trees

 BSP construction enables simple front-to-back traversal

Other Accelerations

45

 Screen space coherence

 Check last hit first

 Beam tracing

 Pencil tracing

 Memory coherence

 Large screens

 Parallelism

 Ray tracing is “embarrassingly parallelizable”

Ray Casting

46

 Simple implementation

Image RayCast(Camera camera, Scene scene, int width, int height) {

Image image = new Image(width, height);

for(int i=0; i<width; i++) {

for(int j=0; j<height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(scene, ray, hit);

}

}

return image;

}

Shading

47

 Must derive computer models for ...

 Emission at light sources

 Scattering at surfaces

 Reception at camera

 Desirable features ...

 Concise

 Efficient to compute

 “Accurate”

Overview

48

 Direct Illumination

 Emission at light sources

 Scattering at surfaces

 Gouraud shading

 Global Illumination

 Shadows

 Refractions

 Inter-object reflections

Introduction

49

Raytracing

Ray Tracing

50

 Rays are casted and recursively traced

 Secondary reflected, refracted and shadow rays are

casted

Ray Tracing

51

 Photorealistic rendering

 Global illumination technique

Local Illumination

52

Global Illumination

53

Radiosity

54

 Physically based

 Object hit by light becomes

a new light source

 Not only object-light

interaction

 But also object-object

light interaction

 Energy exchange

between objects

General situation

55

Raytracing vs. radiosity

56

http://www.soe.ucsc.edu/classes/cmps161/Winter04/projects/aames/index.htm

57

- Ask questions, please!!!

- Be communicative

- More active you are, the better for you!

How the lectures should look like #2

58

NVIDIA RTX

- NVIDIA DLSS

- Deep Learning Super Sampling (DLSS)

- Neural network + Tensor cores

- convolutional auto-encoder neural network

- Raytracing (trained to recognize RT effects)

- edge enhancement

- spatial anti-aliasing (supersampling to 64 samples per pixel)

- Denoising (temporal feedback)

- Upscaling (retaining high frequency data)

- DLSS 2.0

- temporal anti-aliasing upsampling (TAAU)

- DLSS 3.0

- motion interpolation + Optical Flow Accelerator (OFA)

- DLSS 3.5

- multiple denoising algorithms replaced with a single AI model trained on 5x more data

59

DLSS inference

60

DLSS training

61

NVIDIA DLSS

- DLSS (v 3.5)

- New Ray Reconstruction Enhances Ray Tracing with AI
- https://youtu.be/sGKCrcNsVzo

https://youtu.be/sGKCrcNsVzo

62

Acknowledgements

 Thanks to all the people, whose work is shown here and whose

slides were used as a material for creation of these slides:

Matej Novotný, GSVM lectures at FMFI UK

Peter Drahoš, PPGSO lectures at FIIT STU

Output of all the publications and great team work

Very best data from 3D cameras

63

www.skeletex.xyz

madaras@skeletex.xyz

martin.madaras@fmph.uniba.sk

Questions ?!

	Slide 1: Fundamentals of Computer Graphics and Image Processing Raycasting (08)
	Slide 2: Computer Graphics
	Slide 3: How the lectures should look like #1
	Slide 4: Towards Photorealism
	Slide 5: Refraction & Caustics
	Slide 6: Global Illumination
	Slide 7: Introduction
	Slide 8: 3D Rendering
	Slide 9: Ray Casting
	Slide 10: Ray Casting
	Slide 11: Ray Casting
	Slide 12: Ray Casting
	Slide 13: Ray Construction
	Slide 14: Ray Construction
	Slide 15: Ray Casting
	Slide 16: Ray-Scene Intersection
	Slide 17: Ray-Sphere Intersection
	Slide 18: Ray-Sphere Intersection I
	Slide 19: Ray-Sphere Intersection II
	Slide 20: Ray-Sphere Intersection
	Slide 21: Ray-Sphere Intersection
	Slide 22: Ray-Scene Intersection
	Slide 23: Ray-Triangle Intersection
	Slide 24: Ray-Plane Intersection
	Slide 25: Ray-Triangle Intersection
	Slide 26: Ray-Triangle Intersection II
	Slide 27: Other Ray-Primitive Intersection
	Slide 28: Ray-Scene Intersection
	Slide 29: Ray-Scene Intersection
	Slide 30: Ray-Scene Intersection
	Slide 31: Ray-Scene Intersection
	Slide 32: Bounding Volumes
	Slide 33: Bounding Volumes
	Slide 34: Bounding Volume Hierarchies
	Slide 35: Bounding Volume Hierarchies
	Slide 36: Ray-Scene Intersection
	Slide 37: Uniform Grid
	Slide 38: Uniform Grid
	Slide 39: Uniform Grid
	Slide 40: Octree
	Slide 41: Octree
	Slide 42: Binary Space Partition (BSP) Tree
	Slide 43: Binary Space Partition (BSP) Tree
	Slide 44: Binary Space Partition (BSP) Tree
	Slide 45: Other Accelerations
	Slide 46: Ray Casting
	Slide 47: Shading
	Slide 48: Overview
	Slide 49: Introduction
	Slide 50: Ray Tracing
	Slide 51: Ray Tracing
	Slide 52: Local Illumination
	Slide 53: Global Illumination
	Slide 54: Radiosity
	Slide 55: General situation
	Slide 56: Raytracing vs. radiosity
	Slide 57: How the lectures should look like #2
	Slide 58: NVIDIA RTX
	Slide 59: DLSS inference
	Slide 60: DLSS training
	Slide 61: NVIDIA DLSS
	Slide 62: Acknowledgements
	Slide 63: Questions ?!

